5-Hydroxytryptamine strongly inhibits fluid secretion in guinea pig pancreatic duct cells

Atsushi Suzuki, Satoru Naruse, Motoji Kitagawa, Hiroshi Ishiguro, Toshiyuki Yoshikawa, Shigeru B.H. Ko, Akiko Yamamoto, Hiroyuki Hamada, Tetsuo Hayakawa

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

We studied the distribution of 5-hydroxytryptamine- (5-HT-) containing cells in the guinea pig pancreas and examined the effects of 5-HT on fluid secretion by interlobular pancreatic ducts. The 5-HT-immunoreactive cells with morphological characteristics of enterochromaffin (EC) cells were scattered throughout the duct system and were enriched in islets of Langerhans. The fluid secretory rate in the isolated interlobular ducts was measured by videomicroscopy. Basolateral applications of 5-HT strongly but reversibly reduced HCO3-dependent, as well as secretin- and acetylcholine- (ACh-) stimulated, fluid secretion, whereas 5-HT applied into the lumen had no such effects. Secretin-stimulated fluid secretion could be inhibited by a 5-HT3 receptor agonist, but not by agonists of the 5-HT1, 5-HT2, or 5-HT4 receptors. Under the stimulation with secretin, 5-HT decreased the intracellular pH (pHi) and reduced the rate of pHi recovery after acid loading with NH4+, suggesting that 5-HT inhibits the intracellular accumulation of HCO3-. The elevation of intraductal pressure in vivo reduced secretin-stimulated fluid secretion, an effect that could be attenuated by a 5-HT3 receptor antagonist. Thus, 5-HT, acting through basolateral 5-HT3 receptors, strongly inhibits spontaneous, secretin-, and ACh-stimulated fluid secretion by guinea pig pancreatic ducts. 5-HT released from pancreatic ductal EC cells on elevation of the intraductal pressure may regulate fluid secretion of neighboring duct cells in a paracrine fashion.

Original languageEnglish
Pages (from-to)749-756
Number of pages8
JournalJournal of Clinical Investigation
Volume108
Issue number5
DOIs
Publication statusPublished - 2001

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of '5-Hydroxytryptamine strongly inhibits fluid secretion in guinea pig pancreatic duct cells'. Together they form a unique fingerprint.

Cite this