### Abstract

A weighted graph is one in which every edge e is assigned a non-negative number, called the weight, of e. For a vertex v of a weighted graph, d ^{w}(v) is the sum of the weights of the edges incident with v. For a subgraph H of a weighted graph G, the weight of H is the sum of the weights of the edges belonging to H. In this paper, we give a new sufficient condition for a weighted graph to have a heavy cycle. Let G be a k-connected weighted graph where 2 ≤ k. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k+1), if G satisfies the following conditions: (1) The weighted degree sum of any k independent vertices is at least m, (2) w(xz) = w(yz) for every vertex z ε N(x) ∩ N (y) with d(x,y) = 2, arid (4) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Original language | English |
---|---|

Pages (from-to) | 225-232 |

Number of pages | 8 |

Journal | Ars Combinatoria |

Volume | 76 |

Publication status | Published - 2005 Jul |

### Fingerprint

### Keywords

- Heavy cycle
- Weighted degree sum
- Weighted graph

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

_{k}type condition for heavy cycles in weighted graphs.

*Ars Combinatoria*,

*76*, 225-232.