A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model

Chia Wen Lin, Dian E. Septyaningtrias, Hsu Wen Chao, Mikiko Konda, Koji Atarashi, Kozue Takeshita, Kota Tamada, Jun Nomura, Yohei Sasagawa, Kaori Tanaka, Itoshi Nikaido, Kenya Honda, Thomas J. McHugh, Toru Takumi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.

Original languageEnglish
Pages (from-to)3343-3354
Number of pages12
JournalMolecular Psychiatry
Volume27
Issue number8
DOIs
Publication statusPublished - 2022 Aug

ASJC Scopus subject areas

  • Molecular Biology
  • Psychiatry and Mental health
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model'. Together they form a unique fingerprint.

Cite this