A lie group structure for automorphisms of a contact weyl manifold

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Citation (Scopus)

Abstract

In the present article, we are concerned with the automorphisms of a contact Weyl manifold, and we introduce an infinite-dimensional Lie group structure for the automorphism group.

Original languageEnglish
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages25-44
Number of pages20
Volume252
DOIs
Publication statusPublished - 2007

Publication series

NameProgress in Mathematics
Volume252
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Fingerprint

Infinite-dimensional Lie Group
Automorphism Group
Automorphisms
Contact

Keywords

  • Contact Weyl manifold
  • Deformation quantization
  • Infinite-dimensional Lie group
  • Star product

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Analysis
  • Geometry and Topology

Cite this

Miyazaki, N. (2007). A lie group structure for automorphisms of a contact weyl manifold. In Progress in Mathematics (Vol. 252, pp. 25-44). (Progress in Mathematics; Vol. 252). Springer Basel. https://doi.org/10.1007/978-0-8176-4530-4_2

A lie group structure for automorphisms of a contact weyl manifold. / Miyazaki, Naoya.

Progress in Mathematics. Vol. 252 Springer Basel, 2007. p. 25-44 (Progress in Mathematics; Vol. 252).

Research output: Chapter in Book/Report/Conference proceedingChapter

Miyazaki, N 2007, A lie group structure for automorphisms of a contact weyl manifold. in Progress in Mathematics. vol. 252, Progress in Mathematics, vol. 252, Springer Basel, pp. 25-44. https://doi.org/10.1007/978-0-8176-4530-4_2
Miyazaki N. A lie group structure for automorphisms of a contact weyl manifold. In Progress in Mathematics. Vol. 252. Springer Basel. 2007. p. 25-44. (Progress in Mathematics). https://doi.org/10.1007/978-0-8176-4530-4_2
Miyazaki, Naoya. / A lie group structure for automorphisms of a contact weyl manifold. Progress in Mathematics. Vol. 252 Springer Basel, 2007. pp. 25-44 (Progress in Mathematics).
@inbook{dbd5dd033db141e0bb856981db564f38,
title = "A lie group structure for automorphisms of a contact weyl manifold",
abstract = "In the present article, we are concerned with the automorphisms of a contact Weyl manifold, and we introduce an infinite-dimensional Lie group structure for the automorphism group.",
keywords = "Contact Weyl manifold, Deformation quantization, Infinite-dimensional Lie group, Star product",
author = "Naoya Miyazaki",
year = "2007",
doi = "10.1007/978-0-8176-4530-4_2",
language = "English",
volume = "252",
series = "Progress in Mathematics",
publisher = "Springer Basel",
pages = "25--44",
booktitle = "Progress in Mathematics",

}

TY - CHAP

T1 - A lie group structure for automorphisms of a contact weyl manifold

AU - Miyazaki, Naoya

PY - 2007

Y1 - 2007

N2 - In the present article, we are concerned with the automorphisms of a contact Weyl manifold, and we introduce an infinite-dimensional Lie group structure for the automorphism group.

AB - In the present article, we are concerned with the automorphisms of a contact Weyl manifold, and we introduce an infinite-dimensional Lie group structure for the automorphism group.

KW - Contact Weyl manifold

KW - Deformation quantization

KW - Infinite-dimensional Lie group

KW - Star product

UR - http://www.scopus.com/inward/record.url?scp=34547119844&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547119844&partnerID=8YFLogxK

U2 - 10.1007/978-0-8176-4530-4_2

DO - 10.1007/978-0-8176-4530-4_2

M3 - Chapter

AN - SCOPUS:34547119844

VL - 252

T3 - Progress in Mathematics

SP - 25

EP - 44

BT - Progress in Mathematics

PB - Springer Basel

ER -