A low-scale flavon model with a ℤ N symmetry

Tetsutaro Higaki, Junichiro Kawamura

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

We propose a model that explains the fermion mass hierarchy by the Froggatt-Nielsen mechanism with a discrete ℤNF symmetry. As a concrete model, we study a super-symmetric model with a single flavon coupled to the minimal supersymmetric Standard Model. Flavon develops a TeV scale vacuum expectation value for realizing flavor hierarchy, an appropriate μ-term and the electroweak scale, hence the model has a low cutoff scale. We demonstrate how the flavon is successfully stabilized together with the Higgs bosons in the model. The discrete flavor symmetry ℤNF controls not only the Standard Model fermion masses, but also the Higgs potential and a mass of the Higgsino which is a good candidate for dark matter. The hierarchy in the Higgs-flavon sector is determined in order to make the model anomaly-free and realize a stable electroweak vacuum. We show that this model can explain the fermion mass hierarchy, realistic Higgs-flavon potential and thermally produced dark matter at the same time. We discuss flavor violating processes induced by the light flavon which would be detected in future experiments.

Original languageEnglish
Article number129
JournalJournal of High Energy Physics
Volume2020
Issue number3
DOIs
Publication statusPublished - 2020 Mar 1

Keywords

  • Beyond Standard Model
  • Higgs Physics
  • Quark Masses and SM Parameters
  • Supersymmetric Standard Model

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'A low-scale flavon model with a ℤ N symmetry'. Together they form a unique fingerprint.

Cite this