A new estimation of mass accumulation efficiency in helium shell flashes toward type Ia supernova explosions

Mariko Kato, Izumi Hachisu

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

We have calculated the mass accumulation efficiency during helium shell flashes to examine whether or not a carbon-oxygen white dwarf (C+O WD) grows up to the Chandrasekhar mass limit to ignite a Type Ia supernova (SN Ia) explosion. It has been frequently argued that luminous supersoft X-ray sources (SSSs) and symbiotic stars are progenitors of SNe Ia. In such systems, a C+O WD accretes hydrogen-rich matter from a companion and burns hydrogen steadily on its surface. The WD develops a helium layer underneath the hydrogen-rich envelope and undergoes periodic helium shell flashes. Using the OPAL opacity, we have reanalyzed a full cycle of helium shell flashes on a 1.3 M C+O WD and confirmed that the helium envelope of the WD expands to blow a strong wind. A part of the accumulated matter is lost by the wind. The mass accumulation efficiency in helium shell flashes is estimated as ηHe = -0.175(log M + 5.35)2 + 1.05 for -7.3 < log M < -5.9 and ηHe = 1 for -5.9 ≤ log Ṁ ≲ -5, where the mass accretion rate M is in units of M yr 1. In relatively high mass accretion rates, as expected in recent SN Ia progenitor models, the mass accumulation efficiency is large enough for C+O WDs to grow to the Chandrasekhar mass, i.e., ηHe = 0.9 for log Ṁ = -6.3 and ηHe = 0.57 for log Ṁ = -7.0. The wind velocity (∼1000 km s-1) is much faster than the orbital velocity of the binary (≲300 km s-1), and therefore the wind cannot be accelerated further by the companion's motion. We suggest observational counterparts of helium shell flashes in relation to long-term variations in supersoft X-ray fluxes of SSSs and symbiotic stars.

Original languageEnglish
JournalAstrophysical Journal
Volume513
Issue number1 PART 2
Publication statusPublished - 1999 Mar 1

Fingerprint

helium
supernovae
flash
explosions
explosion
shell
symbiotic stars
hydrogen
envelopes
accretion
orbital velocity
x rays
wind velocity
opacity
oxygen
cycles
carbon

Keywords

  • Binaries: close
  • Novae, cataclysmic variables
  • Stars: mass loss
  • Supernovae: general
  • White dwarfs

ASJC Scopus subject areas

  • Space and Planetary Science

Cite this

A new estimation of mass accumulation efficiency in helium shell flashes toward type Ia supernova explosions. / Kato, Mariko; Hachisu, Izumi.

In: Astrophysical Journal, Vol. 513, No. 1 PART 2, 01.03.1999.

Research output: Contribution to journalArticle

@article{65e2820a970f4d968deb6d9eaffb8dac,
title = "A new estimation of mass accumulation efficiency in helium shell flashes toward type Ia supernova explosions",
abstract = "We have calculated the mass accumulation efficiency during helium shell flashes to examine whether or not a carbon-oxygen white dwarf (C+O WD) grows up to the Chandrasekhar mass limit to ignite a Type Ia supernova (SN Ia) explosion. It has been frequently argued that luminous supersoft X-ray sources (SSSs) and symbiotic stars are progenitors of SNe Ia. In such systems, a C+O WD accretes hydrogen-rich matter from a companion and burns hydrogen steadily on its surface. The WD develops a helium layer underneath the hydrogen-rich envelope and undergoes periodic helium shell flashes. Using the OPAL opacity, we have reanalyzed a full cycle of helium shell flashes on a 1.3 M⊙ C+O WD and confirmed that the helium envelope of the WD expands to blow a strong wind. A part of the accumulated matter is lost by the wind. The mass accumulation efficiency in helium shell flashes is estimated as ηHe = -0.175(log M + 5.35)2 + 1.05 for -7.3 < log M < -5.9 and ηHe = 1 for -5.9 ≤ log Ṁ ≲ -5, where the mass accretion rate M is in units of M⊙ yr 1. In relatively high mass accretion rates, as expected in recent SN Ia progenitor models, the mass accumulation efficiency is large enough for C+O WDs to grow to the Chandrasekhar mass, i.e., ηHe = 0.9 for log Ṁ = -6.3 and ηHe = 0.57 for log Ṁ = -7.0. The wind velocity (∼1000 km s-1) is much faster than the orbital velocity of the binary (≲300 km s-1), and therefore the wind cannot be accelerated further by the companion's motion. We suggest observational counterparts of helium shell flashes in relation to long-term variations in supersoft X-ray fluxes of SSSs and symbiotic stars.",
keywords = "Binaries: close, Novae, cataclysmic variables, Stars: mass loss, Supernovae: general, White dwarfs",
author = "Mariko Kato and Izumi Hachisu",
year = "1999",
month = "3",
day = "1",
language = "English",
volume = "513",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1 PART 2",

}

TY - JOUR

T1 - A new estimation of mass accumulation efficiency in helium shell flashes toward type Ia supernova explosions

AU - Kato, Mariko

AU - Hachisu, Izumi

PY - 1999/3/1

Y1 - 1999/3/1

N2 - We have calculated the mass accumulation efficiency during helium shell flashes to examine whether or not a carbon-oxygen white dwarf (C+O WD) grows up to the Chandrasekhar mass limit to ignite a Type Ia supernova (SN Ia) explosion. It has been frequently argued that luminous supersoft X-ray sources (SSSs) and symbiotic stars are progenitors of SNe Ia. In such systems, a C+O WD accretes hydrogen-rich matter from a companion and burns hydrogen steadily on its surface. The WD develops a helium layer underneath the hydrogen-rich envelope and undergoes periodic helium shell flashes. Using the OPAL opacity, we have reanalyzed a full cycle of helium shell flashes on a 1.3 M⊙ C+O WD and confirmed that the helium envelope of the WD expands to blow a strong wind. A part of the accumulated matter is lost by the wind. The mass accumulation efficiency in helium shell flashes is estimated as ηHe = -0.175(log M + 5.35)2 + 1.05 for -7.3 < log M < -5.9 and ηHe = 1 for -5.9 ≤ log Ṁ ≲ -5, where the mass accretion rate M is in units of M⊙ yr 1. In relatively high mass accretion rates, as expected in recent SN Ia progenitor models, the mass accumulation efficiency is large enough for C+O WDs to grow to the Chandrasekhar mass, i.e., ηHe = 0.9 for log Ṁ = -6.3 and ηHe = 0.57 for log Ṁ = -7.0. The wind velocity (∼1000 km s-1) is much faster than the orbital velocity of the binary (≲300 km s-1), and therefore the wind cannot be accelerated further by the companion's motion. We suggest observational counterparts of helium shell flashes in relation to long-term variations in supersoft X-ray fluxes of SSSs and symbiotic stars.

AB - We have calculated the mass accumulation efficiency during helium shell flashes to examine whether or not a carbon-oxygen white dwarf (C+O WD) grows up to the Chandrasekhar mass limit to ignite a Type Ia supernova (SN Ia) explosion. It has been frequently argued that luminous supersoft X-ray sources (SSSs) and symbiotic stars are progenitors of SNe Ia. In such systems, a C+O WD accretes hydrogen-rich matter from a companion and burns hydrogen steadily on its surface. The WD develops a helium layer underneath the hydrogen-rich envelope and undergoes periodic helium shell flashes. Using the OPAL opacity, we have reanalyzed a full cycle of helium shell flashes on a 1.3 M⊙ C+O WD and confirmed that the helium envelope of the WD expands to blow a strong wind. A part of the accumulated matter is lost by the wind. The mass accumulation efficiency in helium shell flashes is estimated as ηHe = -0.175(log M + 5.35)2 + 1.05 for -7.3 < log M < -5.9 and ηHe = 1 for -5.9 ≤ log Ṁ ≲ -5, where the mass accretion rate M is in units of M⊙ yr 1. In relatively high mass accretion rates, as expected in recent SN Ia progenitor models, the mass accumulation efficiency is large enough for C+O WDs to grow to the Chandrasekhar mass, i.e., ηHe = 0.9 for log Ṁ = -6.3 and ηHe = 0.57 for log Ṁ = -7.0. The wind velocity (∼1000 km s-1) is much faster than the orbital velocity of the binary (≲300 km s-1), and therefore the wind cannot be accelerated further by the companion's motion. We suggest observational counterparts of helium shell flashes in relation to long-term variations in supersoft X-ray fluxes of SSSs and symbiotic stars.

KW - Binaries: close

KW - Novae, cataclysmic variables

KW - Stars: mass loss

KW - Supernovae: general

KW - White dwarfs

UR - http://www.scopus.com/inward/record.url?scp=0033095094&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033095094&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0033095094

VL - 513

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1 PART 2

ER -