A new nonformal noncommutative calculus: Associativity and finite part regularization

Hideki Omori, Yoshiaki Maeda, Naoya Miyazaki, Akira Yoshioka

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

We interpret the element 1/2ih (u * v + v * u) in the generators u, v of the Wey1 algebra W2 as an indeterminate in N+ 1/2 or -(N+ 1/2), using methods of the transcendental calculus outlined in the announcement [13]. The main purpose of this paper is to give a rigorous proof for the part of [13] which introduces this indeterminate phenomenon. Namely, we discuss how to obtain associativity in the transcendental calculus and show how the Hadamard finite part procedure can be implemented in our context.

Original languageEnglish
Title of host publicationAsterisque
Pages267-297
Number of pages31
Edition321
Publication statusPublished - 2008 Oct

Publication series

NameAsterisque
Number321
ISSN (Print)03031179

Fingerprint

Associativity
Transcendental
Regularization
Calculus
Generator
Algebra
Context

Keywords

  • Transcendental calculus
  • Weyl algebra

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Omori, H., Maeda, Y., Miyazaki, N., & Yoshioka, A. (2008). A new nonformal noncommutative calculus: Associativity and finite part regularization. In Asterisque (321 ed., pp. 267-297). (Asterisque; No. 321).

A new nonformal noncommutative calculus : Associativity and finite part regularization. / Omori, Hideki; Maeda, Yoshiaki; Miyazaki, Naoya; Yoshioka, Akira.

Asterisque. 321. ed. 2008. p. 267-297 (Asterisque; No. 321).

Research output: Chapter in Book/Report/Conference proceedingChapter

Omori, H, Maeda, Y, Miyazaki, N & Yoshioka, A 2008, A new nonformal noncommutative calculus: Associativity and finite part regularization. in Asterisque. 321 edn, Asterisque, no. 321, pp. 267-297.
Omori H, Maeda Y, Miyazaki N, Yoshioka A. A new nonformal noncommutative calculus: Associativity and finite part regularization. In Asterisque. 321 ed. 2008. p. 267-297. (Asterisque; 321).
Omori, Hideki ; Maeda, Yoshiaki ; Miyazaki, Naoya ; Yoshioka, Akira. / A new nonformal noncommutative calculus : Associativity and finite part regularization. Asterisque. 321. ed. 2008. pp. 267-297 (Asterisque; 321).
@inbook{f15b8550d6a645e684c541d49bbdb730,
title = "A new nonformal noncommutative calculus: Associativity and finite part regularization",
abstract = "We interpret the element 1/2ih (u * v + v * u) in the generators u, v of the Wey1 algebra W2 as an indeterminate in N+ 1/2 or -(N+ 1/2), using methods of the transcendental calculus outlined in the announcement [13]. The main purpose of this paper is to give a rigorous proof for the part of [13] which introduces this indeterminate phenomenon. Namely, we discuss how to obtain associativity in the transcendental calculus and show how the Hadamard finite part procedure can be implemented in our context.",
keywords = "Transcendental calculus, Weyl algebra",
author = "Hideki Omori and Yoshiaki Maeda and Naoya Miyazaki and Akira Yoshioka",
year = "2008",
month = "10",
language = "English",
isbn = "9782856292587",
series = "Asterisque",
number = "321",
pages = "267--297",
booktitle = "Asterisque",
edition = "321",

}

TY - CHAP

T1 - A new nonformal noncommutative calculus

T2 - Associativity and finite part regularization

AU - Omori, Hideki

AU - Maeda, Yoshiaki

AU - Miyazaki, Naoya

AU - Yoshioka, Akira

PY - 2008/10

Y1 - 2008/10

N2 - We interpret the element 1/2ih (u * v + v * u) in the generators u, v of the Wey1 algebra W2 as an indeterminate in N+ 1/2 or -(N+ 1/2), using methods of the transcendental calculus outlined in the announcement [13]. The main purpose of this paper is to give a rigorous proof for the part of [13] which introduces this indeterminate phenomenon. Namely, we discuss how to obtain associativity in the transcendental calculus and show how the Hadamard finite part procedure can be implemented in our context.

AB - We interpret the element 1/2ih (u * v + v * u) in the generators u, v of the Wey1 algebra W2 as an indeterminate in N+ 1/2 or -(N+ 1/2), using methods of the transcendental calculus outlined in the announcement [13]. The main purpose of this paper is to give a rigorous proof for the part of [13] which introduces this indeterminate phenomenon. Namely, we discuss how to obtain associativity in the transcendental calculus and show how the Hadamard finite part procedure can be implemented in our context.

KW - Transcendental calculus

KW - Weyl algebra

UR - http://www.scopus.com/inward/record.url?scp=66249124633&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=66249124633&partnerID=8YFLogxK

M3 - Chapter

AN - SCOPUS:66249124633

SN - 9782856292587

T3 - Asterisque

SP - 267

EP - 297

BT - Asterisque

ER -