Abstract
Stem-cell function is an exquisitely regulated process. Thus far, the contribution of metabolic cues to stem-cell function has not been well understood. Here we identify a previously unknown promyelocytic leukemia (PML)-peroxisome proliferator-activated receptor δ (PPAR-δ)-fatty- acid oxidation (FAO) pathway for the maintenance of hematopoietic stem cells (HSCs). We have found that loss of PPAR-δ or inhibition of mitochondrial FAO induces loss of HSC maintenance, whereas treatment with PPAR-δ agonists improved HSC maintenance. PML exerts its essential role in HSC maintenance through regulation of PPAR signaling and FAO. Mechanistically, the PML-PPAR-δ-FAO pathway controls the asymmetric division of HSCs. Deletion of Ppard or Pml as well as inhibition of FAO results in the symmetric commitment of HSC daughter cells, whereas PPAR-δ activation increased asymmetric cell division. Thus, our findings identify a metabolic switch for the control of HSC cell fate with potential therapeutic implications.
Original language | English |
---|---|
Pages (from-to) | 1350-1358 |
Number of pages | 9 |
Journal | Nature medicine |
Volume | 18 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2012 Sept |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)