A Remark on the Maslov Form on the Group Generated by Invertible Fourier Integral Operators

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

On certain infinite-dimensional Lie groups, we define a closed 1-form in the same way as the Maslov form, which is essentially described by the complex determinant mapping defined in this Letter.

Original languageEnglish
Pages (from-to)35-41
Number of pages7
JournalLetters in Mathematical Physics
Volume42
Issue number1
Publication statusPublished - 1997 Oct 1
Externally publishedYes

Fingerprint

Fourier Integral Operators
determinants
Invertible
Infinite-dimensional Lie Group
operators
Determinant
Closed
Form

Keywords

  • Fourier integral operator
  • Infinite-dimensional lie group
  • Maslov form
  • Oscillatory integral
  • Quantization
  • Symplectic topology

ASJC Scopus subject areas

  • Mathematical Physics
  • Physics and Astronomy(all)
  • Statistical and Nonlinear Physics

Cite this

A Remark on the Maslov Form on the Group Generated by Invertible Fourier Integral Operators. / Miyazaki, Naoya.

In: Letters in Mathematical Physics, Vol. 42, No. 1, 01.10.1997, p. 35-41.

Research output: Contribution to journalArticle

@article{58356ae82c1d4e8bae0da167cc35e415,
title = "A Remark on the Maslov Form on the Group Generated by Invertible Fourier Integral Operators",
abstract = "On certain infinite-dimensional Lie groups, we define a closed 1-form in the same way as the Maslov form, which is essentially described by the complex determinant mapping defined in this Letter.",
keywords = "Fourier integral operator, Infinite-dimensional lie group, Maslov form, Oscillatory integral, Quantization, Symplectic topology",
author = "Naoya Miyazaki",
year = "1997",
month = "10",
day = "1",
language = "English",
volume = "42",
pages = "35--41",
journal = "Letters in Mathematical Physics",
issn = "0377-9017",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - A Remark on the Maslov Form on the Group Generated by Invertible Fourier Integral Operators

AU - Miyazaki, Naoya

PY - 1997/10/1

Y1 - 1997/10/1

N2 - On certain infinite-dimensional Lie groups, we define a closed 1-form in the same way as the Maslov form, which is essentially described by the complex determinant mapping defined in this Letter.

AB - On certain infinite-dimensional Lie groups, we define a closed 1-form in the same way as the Maslov form, which is essentially described by the complex determinant mapping defined in this Letter.

KW - Fourier integral operator

KW - Infinite-dimensional lie group

KW - Maslov form

KW - Oscillatory integral

KW - Quantization

KW - Symplectic topology

UR - http://www.scopus.com/inward/record.url?scp=1842815732&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1842815732&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:1842815732

VL - 42

SP - 35

EP - 41

JO - Letters in Mathematical Physics

JF - Letters in Mathematical Physics

SN - 0377-9017

IS - 1

ER -