A simple method for micropatterning nanofibrous hydrogel film

K. Higashi, N. Miki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper propose a new fabrication process for micropatterning a nanofibrous thin film made of bacterial cellulose(BC). BC is a hydrogel produced by specific bacteria and composed of pure cellulosic nanoflbers exhibiting 3D network structure. Such nanofibrous structure is found to be appropriate for adhesion of anchorage-dependent cells. Furthermore, BC shows high biocompatibility and mechanical toughness. Thus, the microfabrication technique for BC broadens potentials for applications. In this study, we report a new method for micropatterning BC film with feature resolution comparable with photolithography technology.

Original languageEnglish
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages145-148
Number of pages4
ISBN (Electronic)9781457702204
DOIs
Publication statusPublished - 2016 Oct 13
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: 2016 Aug 162016 Aug 20

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period16/8/1616/8/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A simple method for micropatterning nanofibrous hydrogel film'. Together they form a unique fingerprint.

Cite this