TY - JOUR
T1 - A T3587G germ-line mutation of the MDR1 gene encodes a nonfunctional P-glycoprotein
AU - Mutoh, Kazuyoshi
AU - Mitsuhashi, Junko
AU - Kimura, Yasuhisa
AU - Tsukahara, Satomi
AU - Ishikawa, Etsuko
AU - Sai, Kimie
AU - Ozawa, Shogo
AU - Sawada, Jun Ichi
AU - Ueda, Kazumitsu
AU - Katayama, Kazuhiro
AU - Sugimoto, Yoshikazu
PY - 2006/4
Y1 - 2006/4
N2 - The human multidrug resistance gene 1 (MDR1) encodes a plasma membrane P-glycoprotein (P-gp) that functions as an efflux pump for various structurally unrelated anticancer agents. We have identified two nonsynonymous germ-line mutations of the MDR1 gene, C3583T MDR1 and T3587G MDR1, in peripheral blood cell samples from Japanese cancer patients. Two patients carried the C3583T MDR1 allele that encodes H1195Y P-gp, whereas a further two carried T3587G MDR1 that encodes 11196S P-gp. Murine NIH3T3 cells were transfected with pCAL-MDR-IRES-ZEO constructs carrying either wild-type (WT), C3583T, or T3587G MDR1 cDNA and selected with zeocin. The resulting zeocin-resistant mixed populations of transfected cells were designated as 3T3/WT, 3T3/H1195Y, and 3T3/I1196S, respectively. The cell surface expression of I1196S P-gp in 3T3/I1196S cells could not be detected by fluorescence-activated cell sorting, although low expression of 11196S P-gp was found by Western blotting. H1195Y P-gp expression levels in 3T3/H1195Y cells were slightly lower than the corresponding WT P-gp levels in 3T3/WT cells. By immunoblotting analysis, both WT P-gp and H1195Y P-gp were detectable as a 145-kDa protein, whereas I1196S P-gp was visualized as a 140-kDa protein. 3T3/I1196S cells did not show any drug resistance unlike 3T3/H1195Y cells. Moreover, a vanadate-trap assay showed that the I1196S P-gp species lacks ATP-binding activity. Taken together, we conclude from these data that T3587G MDR1 expresses a nonfunctional P-gp and this is therefore the first description of such a germ-line mutation. We contend that the T3587G MDR1 mutation may affect the pharmacokinetics of MDR1-related anticancer agents in patients carrying this allele.
AB - The human multidrug resistance gene 1 (MDR1) encodes a plasma membrane P-glycoprotein (P-gp) that functions as an efflux pump for various structurally unrelated anticancer agents. We have identified two nonsynonymous germ-line mutations of the MDR1 gene, C3583T MDR1 and T3587G MDR1, in peripheral blood cell samples from Japanese cancer patients. Two patients carried the C3583T MDR1 allele that encodes H1195Y P-gp, whereas a further two carried T3587G MDR1 that encodes 11196S P-gp. Murine NIH3T3 cells were transfected with pCAL-MDR-IRES-ZEO constructs carrying either wild-type (WT), C3583T, or T3587G MDR1 cDNA and selected with zeocin. The resulting zeocin-resistant mixed populations of transfected cells were designated as 3T3/WT, 3T3/H1195Y, and 3T3/I1196S, respectively. The cell surface expression of I1196S P-gp in 3T3/I1196S cells could not be detected by fluorescence-activated cell sorting, although low expression of 11196S P-gp was found by Western blotting. H1195Y P-gp expression levels in 3T3/H1195Y cells were slightly lower than the corresponding WT P-gp levels in 3T3/WT cells. By immunoblotting analysis, both WT P-gp and H1195Y P-gp were detectable as a 145-kDa protein, whereas I1196S P-gp was visualized as a 140-kDa protein. 3T3/I1196S cells did not show any drug resistance unlike 3T3/H1195Y cells. Moreover, a vanadate-trap assay showed that the I1196S P-gp species lacks ATP-binding activity. Taken together, we conclude from these data that T3587G MDR1 expresses a nonfunctional P-gp and this is therefore the first description of such a germ-line mutation. We contend that the T3587G MDR1 mutation may affect the pharmacokinetics of MDR1-related anticancer agents in patients carrying this allele.
UR - http://www.scopus.com/inward/record.url?scp=33646545352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646545352&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-05-0240
DO - 10.1158/1535-7163.MCT-05-0240
M3 - Article
C2 - 16648557
AN - SCOPUS:33646545352
SN - 1535-7163
VL - 5
SP - 877
EP - 884
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 4
ER -