Abstract
Cancer patients having anti-programmed cell death-1 (PD-1)/PD ligand 1 (L1)-unresponsive tumors may benefit from advanced immunotherapy. Double-stranded RNA triggers dendritic cell (DC) maturation to cross-prime antigen-specific cytotoxic T lymphocytes (CTLs) via Toll-like receptor 3 (TLR3). The TLR3-specific RNA agonist, ARNAX, can induce anti-tumor CTLs without systemic cytokine/interferon (IFN) production. Here, we have developed a safe vaccine adjuvant for cancer that effectively implements anti-PD-L1 therapy. Co-administration of ARNAX with a tumor-associated antigen facilitated tumor regression in mouse models, and in combination with anti-PD-L1 antibody, activated tumor-specific CTLs in lymphoid tissues, enhanced CTL infiltration, and overcame anti-PD-1 resistance without cytokinemia. The TLR3-TICAM-1-interferon regulatory factor (IRF)3-IFN-β axis in DCs exclusively participated in CD8+ T cell cross-priming. ARNAX therapy established Th1 immunity in the tumor microenvironment, upregulating genes involved in DC/T cell/natural killer (NK) cell recruitment and functionality. Human ex vivo studies disclosed that ARNAX+antigen induced antigen-specific CTL priming and proliferation in peripheral blood mononuclear cells (PBMCs), supporting the feasibility of ARNAX for potentiating anti-PD-1/PD-L1 therapy in human vaccine immunotherapy.
Original language | English |
---|---|
Pages (from-to) | 1874-1887 |
Number of pages | 14 |
Journal | Cell Reports |
Volume | 19 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2017 May 30 |
Externally published | Yes |
Keywords
- PD-L1 blockade
- Toll-like receptor 3
- cancer immunotherapy
- double-stranded RNA
- innate immunity
- priming adjuvant
- tumor immunity
- tumor-associated antigen
- vaccine immunotherapy
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)