TY - GEN
T1 - A topologically-enhanced juxtaposition tool for hybrid wind tunnel
AU - Takeshima, Yuriko
AU - Fujishiro, Issei
AU - Takahashi, Shigeo
AU - Hayase, Toshiyuki
PY - 2013/12/9
Y1 - 2013/12/9
N2 - We have developed a hybrid wind tunnel, where 2D measurement-integrated (MI) simulation, which utilizes actual data acquired from real air flow behind a square cylinder, plays an important role in improving the accuracy of the numerical analysis. The wind tunnel requires an accompanying visual analysis tool with which we can effectively peer into the relationships between the actual and simulated flow fields. In this paper, we attempt to exploit an augmented reality display to that end. The basic idea is to superimpose the computationally-visualized MI simulated pressure field onto the actual flow velocity structure physically-visualized with oil misttraced streaklines instantaneously. Spatial registration of these two visual sources is rather straight-forward since the fixed cylinder of the wind tunnel is easily identified, whereas visualizing the MI simulated pressure field can be characterized with a sophisticated scheme based on differential topology. Considering the fact that vortex centers are located at local minima in the pressure field, and each minimum is surrounded by a derived topological feature called ridge cycle, we can colorize the field adaptively and keep track of Karman vortex streets robustly, regardless of drastic change in the Reynolds number of the flow field.
AB - We have developed a hybrid wind tunnel, where 2D measurement-integrated (MI) simulation, which utilizes actual data acquired from real air flow behind a square cylinder, plays an important role in improving the accuracy of the numerical analysis. The wind tunnel requires an accompanying visual analysis tool with which we can effectively peer into the relationships between the actual and simulated flow fields. In this paper, we attempt to exploit an augmented reality display to that end. The basic idea is to superimpose the computationally-visualized MI simulated pressure field onto the actual flow velocity structure physically-visualized with oil misttraced streaklines instantaneously. Spatial registration of these two visual sources is rather straight-forward since the fixed cylinder of the wind tunnel is easily identified, whereas visualizing the MI simulated pressure field can be characterized with a sophisticated scheme based on differential topology. Considering the fact that vortex centers are located at local minima in the pressure field, and each minimum is surrounded by a derived topological feature called ridge cycle, we can colorize the field adaptively and keep track of Karman vortex streets robustly, regardless of drastic change in the Reynolds number of the flow field.
KW - Differential topology
KW - juxtaposition
KW - transfer function design
UR - http://www.scopus.com/inward/record.url?scp=84889056179&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889056179&partnerID=8YFLogxK
U2 - 10.1109/PacificVis.2013.6596135
DO - 10.1109/PacificVis.2013.6596135
M3 - Conference contribution
AN - SCOPUS:84889056179
SN - 9781467347976
T3 - IEEE Pacific Visualization Symposium
SP - 113
EP - 120
BT - IEEE Symposium on Pacific Visualization 2013, PacificVis 2013 - Proceedings
T2 - 6th IEEE Symposium on Pacific Visualization, PacificVis 2013
Y2 - 26 February 2013 through 1 March 2013
ER -