Accelerating blockchain transfer system using FPGA-Based NIC

Yuma Sakakibara, Yuta Tokusashi, Shin Morishima, Hiroki Matsutani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Blockchain is core technology for cryptocurrency and it is possible to become fundamental platform for industry and business. Especially, a blockchain-based digital asset transfer system using Internet of Things (IoT) products has recently been considered as a new practical platform, but the protocol limits performance. Previous research has improved performance by proposing new protocols, but further improvement is necessary for dealing with increasing transactions via IoT products. Therefore, we propose an in-Network Interface Card (in-NIC) processing approach using a Field Programmable Gate Array (FPGA) to improve performance of a blockchain-based transfer system. To be more concrete, we design and implement a prototype NIC with a key-value data store written in a P4 language on the FPGA that has four 10Gigabit Ethernet (10GbE) network interfaces. The prototype system supports frequently-used commands (CREATE, ISSUE, TRANSFER and REFER) for transferring digital asset. It reduces time for processing a kernel network protocol stack and accessing the data store. In fact, we measured throughput and latency of our prototype system compared to those of a blockchain software application. As a result, we found that our solution is able to obtain throughput 6.04 times higher on average and latency 15.4 times lower on average for all typical blockchain operations.

Original languageEnglish
Title of host publicationProceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018
EditorsJinjun Chen, Laurence T. Yang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages171-178
Number of pages8
ISBN (Electronic)9781728111414
DOIs
Publication statusPublished - 2019 Mar 20
Event16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018 - Melbourne, Australia
Duration: 2018 Dec 112018 Dec 13

Publication series

NameProceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018

Conference

Conference16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018
CountryAustralia
CityMelbourne
Period18/12/1118/12/13

Fingerprint

Field programmable gate arrays (FPGA)
Network protocols
Interfaces (computer)
Throughput
Processing
Ethernet
Application programs
Industry
Concretes
Internet of things
Electronic money

Keywords

  • Blockchain
  • FPGA
  • Key-Value Store
  • P4

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications

Cite this

Sakakibara, Y., Tokusashi, Y., Morishima, S., & Matsutani, H. (2019). Accelerating blockchain transfer system using FPGA-Based NIC. In J. Chen, & L. T. Yang (Eds.), Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018 (pp. 171-178). [8672299] (Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BDCloud.2018.00037

Accelerating blockchain transfer system using FPGA-Based NIC. / Sakakibara, Yuma; Tokusashi, Yuta; Morishima, Shin; Matsutani, Hiroki.

Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018. ed. / Jinjun Chen; Laurence T. Yang. Institute of Electrical and Electronics Engineers Inc., 2019. p. 171-178 8672299 (Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Sakakibara, Y, Tokusashi, Y, Morishima, S & Matsutani, H 2019, Accelerating blockchain transfer system using FPGA-Based NIC. in J Chen & LT Yang (eds), Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018., 8672299, Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, Institute of Electrical and Electronics Engineers Inc., pp. 171-178, 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, Melbourne, Australia, 18/12/11. https://doi.org/10.1109/BDCloud.2018.00037
Sakakibara Y, Tokusashi Y, Morishima S, Matsutani H. Accelerating blockchain transfer system using FPGA-Based NIC. In Chen J, Yang LT, editors, Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018. Institute of Electrical and Electronics Engineers Inc. 2019. p. 171-178. 8672299. (Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018). https://doi.org/10.1109/BDCloud.2018.00037
Sakakibara, Yuma ; Tokusashi, Yuta ; Morishima, Shin ; Matsutani, Hiroki. / Accelerating blockchain transfer system using FPGA-Based NIC. Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018. editor / Jinjun Chen ; Laurence T. Yang. Institute of Electrical and Electronics Engineers Inc., 2019. pp. 171-178 (Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018).
@inproceedings{697e6c24496b46b0a30140910f992729,
title = "Accelerating blockchain transfer system using FPGA-Based NIC",
abstract = "Blockchain is core technology for cryptocurrency and it is possible to become fundamental platform for industry and business. Especially, a blockchain-based digital asset transfer system using Internet of Things (IoT) products has recently been considered as a new practical platform, but the protocol limits performance. Previous research has improved performance by proposing new protocols, but further improvement is necessary for dealing with increasing transactions via IoT products. Therefore, we propose an in-Network Interface Card (in-NIC) processing approach using a Field Programmable Gate Array (FPGA) to improve performance of a blockchain-based transfer system. To be more concrete, we design and implement a prototype NIC with a key-value data store written in a P4 language on the FPGA that has four 10Gigabit Ethernet (10GbE) network interfaces. The prototype system supports frequently-used commands (CREATE, ISSUE, TRANSFER and REFER) for transferring digital asset. It reduces time for processing a kernel network protocol stack and accessing the data store. In fact, we measured throughput and latency of our prototype system compared to those of a blockchain software application. As a result, we found that our solution is able to obtain throughput 6.04 times higher on average and latency 15.4 times lower on average for all typical blockchain operations.",
keywords = "Blockchain, FPGA, Key-Value Store, P4",
author = "Yuma Sakakibara and Yuta Tokusashi and Shin Morishima and Hiroki Matsutani",
year = "2019",
month = "3",
day = "20",
doi = "10.1109/BDCloud.2018.00037",
language = "English",
series = "Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "171--178",
editor = "Jinjun Chen and Yang, {Laurence T.}",
booktitle = "Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018",

}

TY - GEN

T1 - Accelerating blockchain transfer system using FPGA-Based NIC

AU - Sakakibara, Yuma

AU - Tokusashi, Yuta

AU - Morishima, Shin

AU - Matsutani, Hiroki

PY - 2019/3/20

Y1 - 2019/3/20

N2 - Blockchain is core technology for cryptocurrency and it is possible to become fundamental platform for industry and business. Especially, a blockchain-based digital asset transfer system using Internet of Things (IoT) products has recently been considered as a new practical platform, but the protocol limits performance. Previous research has improved performance by proposing new protocols, but further improvement is necessary for dealing with increasing transactions via IoT products. Therefore, we propose an in-Network Interface Card (in-NIC) processing approach using a Field Programmable Gate Array (FPGA) to improve performance of a blockchain-based transfer system. To be more concrete, we design and implement a prototype NIC with a key-value data store written in a P4 language on the FPGA that has four 10Gigabit Ethernet (10GbE) network interfaces. The prototype system supports frequently-used commands (CREATE, ISSUE, TRANSFER and REFER) for transferring digital asset. It reduces time for processing a kernel network protocol stack and accessing the data store. In fact, we measured throughput and latency of our prototype system compared to those of a blockchain software application. As a result, we found that our solution is able to obtain throughput 6.04 times higher on average and latency 15.4 times lower on average for all typical blockchain operations.

AB - Blockchain is core technology for cryptocurrency and it is possible to become fundamental platform for industry and business. Especially, a blockchain-based digital asset transfer system using Internet of Things (IoT) products has recently been considered as a new practical platform, but the protocol limits performance. Previous research has improved performance by proposing new protocols, but further improvement is necessary for dealing with increasing transactions via IoT products. Therefore, we propose an in-Network Interface Card (in-NIC) processing approach using a Field Programmable Gate Array (FPGA) to improve performance of a blockchain-based transfer system. To be more concrete, we design and implement a prototype NIC with a key-value data store written in a P4 language on the FPGA that has four 10Gigabit Ethernet (10GbE) network interfaces. The prototype system supports frequently-used commands (CREATE, ISSUE, TRANSFER and REFER) for transferring digital asset. It reduces time for processing a kernel network protocol stack and accessing the data store. In fact, we measured throughput and latency of our prototype system compared to those of a blockchain software application. As a result, we found that our solution is able to obtain throughput 6.04 times higher on average and latency 15.4 times lower on average for all typical blockchain operations.

KW - Blockchain

KW - FPGA

KW - Key-Value Store

KW - P4

UR - http://www.scopus.com/inward/record.url?scp=85063917836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063917836&partnerID=8YFLogxK

U2 - 10.1109/BDCloud.2018.00037

DO - 10.1109/BDCloud.2018.00037

M3 - Conference contribution

T3 - Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018

SP - 171

EP - 178

BT - Proceedings - 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018

A2 - Chen, Jinjun

A2 - Yang, Laurence T.

PB - Institute of Electrical and Electronics Engineers Inc.

ER -