Acoustic-resolution photoacoustic imaging system with simple fiber illumination

Yasuyuki Tsunoi, Shunichi Sato, Ryota Watanabe, Satoko Kawauchi, Hiroshi Ashida, Mitsuhiro Terakawa

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    4 Citations (Scopus)


    Acoustic-resolution photoacoustic microscopy (AR-PAM) with dark-field confocal illumination enables unique high-resolution visualization of chromophores in tissue, such as microvasculatures, within depths of a few millimeters. However, most current systems are bulky and use complex optical components for illumination, thus requiring highly sensitive alignment. In this study, we developed a compact alignment-free acoustic-resolution photoacoustic imaging system with simple fiber illumination. Four optical fibers were placed in four directions around a high-frequency (30-MHz) ultrasound sensor attached with the high-numerical-aperture acoustic lens. The setting angle of the fibers were determined to form a dark field on the tissue surface under the acoustic lens and for the four light beams from the fibers to be combined near the focal point of the acoustic lens, i.e., at a depth of around 1.2 mm in the tissue. The acoustic lens and output ends of the fibers were capped with an acoustically and optically transparent engineering plastic sheet, whose surface can be directly placed and scanned on the tissue surface with ultrasound gel. The diameter and height of this imaging head were as small as 32 mm and 27 mm respectively. The phantom study showed that the lateral signal spreading was 120 μm, which agreed well with the theoretical value of 112 μm. With the system, we attempted to image vasculatures in the rat skin, demonstrating high-contrast visualization of the blood vessels of a few hundred micrometers in diameter in the tissue.

    Original languageEnglish
    Title of host publicationPhotons Plus Ultrasound
    Subtitle of host publicationImaging and Sensing 2013
    Publication statusPublished - 2013 May 28
    EventPhotons Plus Ultrasound: Imaging and Sensing 2013 - San Francisco, CA, United States
    Duration: 2013 Feb 32013 Feb 5

    Publication series

    NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
    ISSN (Print)1605-7422


    OtherPhotons Plus Ultrasound: Imaging and Sensing 2013
    Country/TerritoryUnited States
    CitySan Francisco, CA


    • acoustic lens
    • optical fiber illumination
    • photoacoustic microscopy
    • ultrasound focusing
    • vascular imaging

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Biomaterials
    • Atomic and Molecular Physics, and Optics
    • Radiology Nuclear Medicine and imaging


    Dive into the research topics of 'Acoustic-resolution photoacoustic imaging system with simple fiber illumination'. Together they form a unique fingerprint.

    Cite this