TY - GEN
T1 - Acoustic-resolution photoacoustic imaging system with simple fiber illumination
AU - Tsunoi, Yasuyuki
AU - Sato, Shunichi
AU - Watanabe, Ryota
AU - Kawauchi, Satoko
AU - Ashida, Hiroshi
AU - Terakawa, Mitsuhiro
PY - 2013/5/28
Y1 - 2013/5/28
N2 - Acoustic-resolution photoacoustic microscopy (AR-PAM) with dark-field confocal illumination enables unique high-resolution visualization of chromophores in tissue, such as microvasculatures, within depths of a few millimeters. However, most current systems are bulky and use complex optical components for illumination, thus requiring highly sensitive alignment. In this study, we developed a compact alignment-free acoustic-resolution photoacoustic imaging system with simple fiber illumination. Four optical fibers were placed in four directions around a high-frequency (30-MHz) ultrasound sensor attached with the high-numerical-aperture acoustic lens. The setting angle of the fibers were determined to form a dark field on the tissue surface under the acoustic lens and for the four light beams from the fibers to be combined near the focal point of the acoustic lens, i.e., at a depth of around 1.2 mm in the tissue. The acoustic lens and output ends of the fibers were capped with an acoustically and optically transparent engineering plastic sheet, whose surface can be directly placed and scanned on the tissue surface with ultrasound gel. The diameter and height of this imaging head were as small as 32 mm and 27 mm respectively. The phantom study showed that the lateral signal spreading was 120 μm, which agreed well with the theoretical value of 112 μm. With the system, we attempted to image vasculatures in the rat skin, demonstrating high-contrast visualization of the blood vessels of a few hundred micrometers in diameter in the tissue.
AB - Acoustic-resolution photoacoustic microscopy (AR-PAM) with dark-field confocal illumination enables unique high-resolution visualization of chromophores in tissue, such as microvasculatures, within depths of a few millimeters. However, most current systems are bulky and use complex optical components for illumination, thus requiring highly sensitive alignment. In this study, we developed a compact alignment-free acoustic-resolution photoacoustic imaging system with simple fiber illumination. Four optical fibers were placed in four directions around a high-frequency (30-MHz) ultrasound sensor attached with the high-numerical-aperture acoustic lens. The setting angle of the fibers were determined to form a dark field on the tissue surface under the acoustic lens and for the four light beams from the fibers to be combined near the focal point of the acoustic lens, i.e., at a depth of around 1.2 mm in the tissue. The acoustic lens and output ends of the fibers were capped with an acoustically and optically transparent engineering plastic sheet, whose surface can be directly placed and scanned on the tissue surface with ultrasound gel. The diameter and height of this imaging head were as small as 32 mm and 27 mm respectively. The phantom study showed that the lateral signal spreading was 120 μm, which agreed well with the theoretical value of 112 μm. With the system, we attempted to image vasculatures in the rat skin, demonstrating high-contrast visualization of the blood vessels of a few hundred micrometers in diameter in the tissue.
KW - acoustic lens
KW - optical fiber illumination
KW - photoacoustic microscopy
KW - ultrasound focusing
KW - vascular imaging
UR - http://www.scopus.com/inward/record.url?scp=84878047478&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878047478&partnerID=8YFLogxK
U2 - 10.1117/12.2003150
DO - 10.1117/12.2003150
M3 - Conference contribution
AN - SCOPUS:84878047478
SN - 9780819493507
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photons Plus Ultrasound
T2 - Photons Plus Ultrasound: Imaging and Sensing 2013
Y2 - 3 February 2013 through 5 February 2013
ER -