TY - JOUR
T1 - Affinity modulation of the platelet integrin α(11b)β3 by α- chymotrypsin
T2 - A possible role for Na+/Ca2+ exchanger
AU - Shiraga, Masamichi
AU - Tomiyama, Yoshiaki
AU - Honda, Shigenori
AU - Kashiwagi, Hirokazu
AU - Kosugi, Satoru
AU - Handa, Makoto
AU - Ikeda, Yasuo
AU - Kanakura, Yuzuru
AU - Kurata, Yoshiyuki
AU - Matsuzawa, Yuji
PY - 1996/10/1
Y1 - 1996/10/1
N2 - In the present study, we have investigated the mechanism of affinity modulation of α(IIb)β3 by chymotrypsin. We first confirmed that α- chymotrypsin could activate α(IIb)β3 (~7,000 molecules per platelet) without major intracellular signaling. However, we unexpectedly found that high concentrations of amiloride dose-dependently inhibited 125I- fibrinogen binding to the chymotrypsin-treated platelets, as well as the platelet aggregation (IC50 (50% inhibitory concentration] for fibrinogen binding, 530 μmol/L). In contrast, amiloride did not inhibit α(IIb)β3 activation induced by anti-α(IIb)β3 monoclonal antibody PT25-2 or AP5. To identify the pathway involved, the effects of alteration of Na+ gradient in platelets were examined. Lowering Na+ gradient by replacing extracellular Na+ with tetramethylammonium (TMA) increased the number of activated α(IIb)β3 by twofold, as assessed by fibrinogenbinding assay. The incubation of platelets with ouabain, a Na+/K+-adenosine triphosphatase (ATPase) inhibitor, further augmented α(IIb)β3 activation. These data suggested that a likely candidate for the pathway was Na+/Ca2+ exchanger. At 140 mmol/L [Na+](o). 45Ca2+ influx to the chymotrypsintreated platelets was twofold greater than that to nontreated platelets. Replacement of Na+ with TMA further increased the Ca2+ influx, and the increase was inhibited by amiloride dose-dependently. 3',4'-Dichlorobenzamil (DCB) and bepridil, relatively specific inhibitors of Na+/Ca2+ exchanger, also inhibited the chymotrypsin-induced α(IIb)β3 activation, and the IC50 values of these inhibitors for fibrinogen binding were 25 μmol/L and 52 μmol/L, respectively. Moreover, platelet aggregation induced by various physiologic agonists was inhibited by DCB or bepridil, while platelet agglutination by ristocetin was not. Our data newly suggest that Na+/Ca2+ exchanger operating in reverse mode may be directly involved in inside-out signaling that activates α(IIb)β3.
AB - In the present study, we have investigated the mechanism of affinity modulation of α(IIb)β3 by chymotrypsin. We first confirmed that α- chymotrypsin could activate α(IIb)β3 (~7,000 molecules per platelet) without major intracellular signaling. However, we unexpectedly found that high concentrations of amiloride dose-dependently inhibited 125I- fibrinogen binding to the chymotrypsin-treated platelets, as well as the platelet aggregation (IC50 (50% inhibitory concentration] for fibrinogen binding, 530 μmol/L). In contrast, amiloride did not inhibit α(IIb)β3 activation induced by anti-α(IIb)β3 monoclonal antibody PT25-2 or AP5. To identify the pathway involved, the effects of alteration of Na+ gradient in platelets were examined. Lowering Na+ gradient by replacing extracellular Na+ with tetramethylammonium (TMA) increased the number of activated α(IIb)β3 by twofold, as assessed by fibrinogenbinding assay. The incubation of platelets with ouabain, a Na+/K+-adenosine triphosphatase (ATPase) inhibitor, further augmented α(IIb)β3 activation. These data suggested that a likely candidate for the pathway was Na+/Ca2+ exchanger. At 140 mmol/L [Na+](o). 45Ca2+ influx to the chymotrypsintreated platelets was twofold greater than that to nontreated platelets. Replacement of Na+ with TMA further increased the Ca2+ influx, and the increase was inhibited by amiloride dose-dependently. 3',4'-Dichlorobenzamil (DCB) and bepridil, relatively specific inhibitors of Na+/Ca2+ exchanger, also inhibited the chymotrypsin-induced α(IIb)β3 activation, and the IC50 values of these inhibitors for fibrinogen binding were 25 μmol/L and 52 μmol/L, respectively. Moreover, platelet aggregation induced by various physiologic agonists was inhibited by DCB or bepridil, while platelet agglutination by ristocetin was not. Our data newly suggest that Na+/Ca2+ exchanger operating in reverse mode may be directly involved in inside-out signaling that activates α(IIb)β3.
UR - http://www.scopus.com/inward/record.url?scp=10144241696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=10144241696&partnerID=8YFLogxK
U2 - 10.1182/blood.v88.7.2594.bloodjournal8872594
DO - 10.1182/blood.v88.7.2594.bloodjournal8872594
M3 - Article
C2 - 8839852
AN - SCOPUS:10144241696
SN - 0006-4971
VL - 88
SP - 2594
EP - 2602
JO - Blood
JF - Blood
IS - 7
ER -