Abstract
The protein kinase C (PKC) family consists of ten isozymes and is a potential target for treating cancer, Alzheimer's disease, and HIV infection. Since known natural PKC agonists have little selectivity among the PKC isozymes, a new scaffold is needed to develop PKC ligands with remarkable isozyme selectivity. Taking advantage of machine-learning and computational chemistry approaches, we screened the PubChem database to select sesterterpenoids alotaketals as potential PKC ligands, then designed and synthesized alotaketal analogues with a different ring system and stereochemistry from the natural products. The analogue exhibited a one-order higher affinity for PKCα-C1A than for the PKCδ-C1B domain. Thus, this compound is expected to serve as the basis for developing PKC ligands with isozyme selectivity.
Original language | English |
---|---|
Pages (from-to) | 6693-6696 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 58 |
Issue number | 47 |
DOIs | |
Publication status | Published - 2022 May 18 |
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Chemistry(all)
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry