### Abstract

Algebraic independence of the numbers ∑_{h ≥ 0} h^{j}ζ^{h}/R_{dh + l}, where {R_{n}}_{n ≥ 0} is a sequence of integers satisfying a binary linear recurrence relation, is studied by Mahler's method.

Original language | English |
---|---|

Pages (from-to) | 135-148 |

Number of pages | 14 |

Journal | Monatshefte fur Mathematik |

Volume | 123 |

Issue number | 2 |

Publication status | Published - 1997 |

### Fingerprint

### Keywords

- Algebraic independence
- Mahler's method

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Monatshefte fur Mathematik*,

*123*(2), 135-148.

**Algebraic independence of reciprocal sums of binary recurrences.** / Nishioka, Kumiko.

Research output: Contribution to journal › Article

*Monatshefte fur Mathematik*, vol. 123, no. 2, pp. 135-148.

}

TY - JOUR

T1 - Algebraic independence of reciprocal sums of binary recurrences

AU - Nishioka, Kumiko

PY - 1997

Y1 - 1997

N2 - Algebraic independence of the numbers ∑h ≥ 0 hjζh/Rdh + l, where {Rn}n ≥ 0 is a sequence of integers satisfying a binary linear recurrence relation, is studied by Mahler's method.

AB - Algebraic independence of the numbers ∑h ≥ 0 hjζh/Rdh + l, where {Rn}n ≥ 0 is a sequence of integers satisfying a binary linear recurrence relation, is studied by Mahler's method.

KW - Algebraic independence

KW - Mahler's method

UR - http://www.scopus.com/inward/record.url?scp=0031461752&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031461752&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031461752

VL - 123

SP - 135

EP - 148

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 2

ER -