### Abstract

Algebraic independence of the numbers ∑^{l}_{h≥0}b_{h}/(R_{kdh+l})^{m}, where {R_{n}}_{n≥0} is a sequence of integers satisfying a binary linear recurrence relation and {b_{h}}_{h≥0} is a periodic sequence of algebraic numbers not identically zero, are studied.

Original language | English |
---|---|

Pages (from-to) | 97-108 |

Number of pages | 12 |

Journal | Mathematische Nachrichten |

Volume | 202 |

DOIs | |

Publication status | Published - 1999 Jan 1 |

### Keywords

- Algebraic independence
- Fibonacci numbers
- Mahler function

### ASJC Scopus subject areas

- Mathematics(all)

## Fingerprint Dive into the research topics of 'Algebraic independence of sums of reciprocals of the Fibonacci numbers'. Together they form a unique fingerprint.

## Cite this

Nishioka, K., Tanaka, T. A., & Toshimitsu, T. (1999). Algebraic independence of sums of reciprocals of the Fibonacci numbers.

*Mathematische Nachrichten*,*202*, 97-108. https://doi.org/10.1002/mana.19992020108