### Abstract

In This paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbersΣ^{∞}_{n=1}F^{-2s}_{2n} and second, for sums of evenly even and unevenly even typesΣ^{∞}_{n=1}F^{-2s}_{4n}Σ^{∞}_{n=1}F^{-2s}_{4n-2}.The numbersΣ^{∞}_{n=1}F^{-2}_{4n-2}.

Original language | English |
---|---|

Pages (from-to) | 173-200 |

Number of pages | 28 |

Journal | Fundamental and Applied Mathematics |

Volume | 16 |

Issue number | 5 |

Publication status | Published - 2010 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Algebra and Number Theory
- Analysis
- Applied Mathematics
- Geometry and Topology

### Cite this

*Fundamental and Applied Mathematics*,

*16*(5), 173-200.

**Algebraic relations for reciprocal sums of even terms in Fibonacci numbers.** / Elsner, C.; Shimomura, S. H.; Shiokawa, I.

Research output: Contribution to journal › Article

*Fundamental and Applied Mathematics*, vol. 16, no. 5, pp. 173-200.

}

TY - JOUR

T1 - Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

AU - Elsner, C.

AU - Shimomura, S. H.

AU - Shiokawa, I.

PY - 2010

Y1 - 2010

N2 - In This paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbersΣ∞n=1F-2s2n and second, for sums of evenly even and unevenly even typesΣ∞n=1F-2s4nΣ∞n=1F-2s4n-2.The numbersΣ∞n=1F-24n-2.

AB - In This paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbersΣ∞n=1F-2s2n and second, for sums of evenly even and unevenly even typesΣ∞n=1F-2s4nΣ∞n=1F-2s4n-2.The numbersΣ∞n=1F-24n-2.

UR - http://www.scopus.com/inward/record.url?scp=79959615800&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79959615800&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:79959615800

VL - 16

SP - 173

EP - 200

JO - Fundamental and Applied Mathematics

JF - Fundamental and Applied Mathematics

SN - 1560-5159

IS - 5

ER -