An advanced kinetic model of electron-beam-excited KrF lasers including the vibrational relaxation in KrF*(B) and collisional mixing of KrF*(B,C)

Fumihiko Kannari, Minoru Obara, Tomoo Fujioka

    Research output: Contribution to journalArticle

    114 Citations (Scopus)

    Abstract

    Computer models developed so far on electron-beam-excited KrF(B-X, 248 nm) lasers that include the vibrational relaxation process in the upper lasing B level at the finite rate could not predict the high intrinsic laser efficiency which was experimentally reported. This is attributed to the reduction of the laser extraction efficiency. We have developed a four-level KrF laser model that includes the vibrational relaxation process and also the collisional mixing of the KrF*(B) and the KrF*(C) levels. The collisional quenching rates for KrF*(B,C) that we used and the vibrational relaxation rate were carefully estimated by using the effective spontaneous lifetimes for KrF*(B,C). As a result, the model prediction was in quite good agreement with many experimental results for a saturation behavior of KrF*(B-X) fluorescence, for small-signal gains, for small-signal absorptions, and for intrinsic efficiencies. Estimated rate constants in this model for the vibrational relaxation and the KrF*(B,C) mixing are 4×10 -11 and 5×10-1 0 cm3/s, respectively, for a two-body collision rate with argon gas.

    Original languageEnglish
    Pages (from-to)4309-4322
    Number of pages14
    JournalJournal of Applied Physics
    Volume57
    Issue number9
    DOIs
    Publication statusPublished - 1985 Dec 1

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Fingerprint Dive into the research topics of 'An advanced kinetic model of electron-beam-excited KrF lasers including the vibrational relaxation in KrF*(B) and collisional mixing of KrF*(B,C)'. Together they form a unique fingerprint.

  • Cite this