An extended genovo metagenomic assembler by incorporating paired-end information

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Metagenomes present assembly challenges, when assembling multiple genomes from mixed reads of multiple species. An assembler for single genomes can't adapt well when applied in this case. A metagenomic assembler, Genovo, is a de novo assembler for metagenomes under a generative probabilistic model. Genovo assembles all reads without discarding any reads in a preprocessing step, and is therefore able to extract more information from metagenomic data and, in principle, generate better assembly results. Paired end sequencing is currently widely-used yet Genovo was designed for 454 single end reads. In this research, we attempted to extend Genovo by incorporating paired-end information, named Xgenovo, so that it generates higher quality assemblies with paired end reads. First, we extended Genovo by adding a bonus parameter in the Chinese Restaurant Process used to get prior accounts for the unknown number of genomes in the sample. This bonus parameter intends for a pair of reads to be in the same contig and as an effort to solve chimera contig case. Second, we modified the sampling process of the location of a read in a contig. We used relative distance for the number of trials in the symmetric geometric distribution instead of using distance between the offset and the center of contig used in Genovo. Using this relative distance, a read sampled in the appropriate location has higher probability. Therefore a read will be mapped in the correct location. Results of extensive experiments on simulated metagenomic datasets from simple to complex with species coverage setting following uniform and lognormal distribution showed that Xgenovo can be superior to the original Genovo and the recently proposed metagenome assembler for 454 reads, MAP. Xgenovo successfully generated longer N50 than Genovo and MAP while maintaining the assembly quality even for very complex metagenomic datasets consisting of 115 species. Xgenovo also demonstrated the potential to decrease the computational cost. This means that our strategy worked well. The software and all simulated datasets are publicly available online at http://xgenovo.dna.bio.keio.ac.jp.

Original languageEnglish
Article numbere196
JournalPeerJ
Volume2013
Issue number1
DOIs
Publication statusPublished - 2013

Fingerprint

Metagenomics
Metagenome
Genes
Genome
Restaurants
Statistical Models
genome
Software
probabilistic models
Sampling
chimerism
restaurants
Costs and Cost Analysis
cans
Research
Datasets
Costs
Experiments
sampling

Keywords

  • 454 paired end reads
  • de novo metagenomic assembler
  • Genovo

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)
  • Neuroscience(all)

Cite this

An extended genovo metagenomic assembler by incorporating paired-end information. / Afiahayati, ; Sato, Kengo; Sakakibara, Yasubumi.

In: PeerJ, Vol. 2013, No. 1, e196, 2013.

Research output: Contribution to journalArticle

@article{4a4455dc7f3448db9276754ecb935b58,
title = "An extended genovo metagenomic assembler by incorporating paired-end information",
abstract = "Metagenomes present assembly challenges, when assembling multiple genomes from mixed reads of multiple species. An assembler for single genomes can't adapt well when applied in this case. A metagenomic assembler, Genovo, is a de novo assembler for metagenomes under a generative probabilistic model. Genovo assembles all reads without discarding any reads in a preprocessing step, and is therefore able to extract more information from metagenomic data and, in principle, generate better assembly results. Paired end sequencing is currently widely-used yet Genovo was designed for 454 single end reads. In this research, we attempted to extend Genovo by incorporating paired-end information, named Xgenovo, so that it generates higher quality assemblies with paired end reads. First, we extended Genovo by adding a bonus parameter in the Chinese Restaurant Process used to get prior accounts for the unknown number of genomes in the sample. This bonus parameter intends for a pair of reads to be in the same contig and as an effort to solve chimera contig case. Second, we modified the sampling process of the location of a read in a contig. We used relative distance for the number of trials in the symmetric geometric distribution instead of using distance between the offset and the center of contig used in Genovo. Using this relative distance, a read sampled in the appropriate location has higher probability. Therefore a read will be mapped in the correct location. Results of extensive experiments on simulated metagenomic datasets from simple to complex with species coverage setting following uniform and lognormal distribution showed that Xgenovo can be superior to the original Genovo and the recently proposed metagenome assembler for 454 reads, MAP. Xgenovo successfully generated longer N50 than Genovo and MAP while maintaining the assembly quality even for very complex metagenomic datasets consisting of 115 species. Xgenovo also demonstrated the potential to decrease the computational cost. This means that our strategy worked well. The software and all simulated datasets are publicly available online at http://xgenovo.dna.bio.keio.ac.jp.",
keywords = "454 paired end reads, de novo metagenomic assembler, Genovo",
author = "Afiahayati and Kengo Sato and Yasubumi Sakakibara",
year = "2013",
doi = "10.7717/peerj.196",
language = "English",
volume = "2013",
journal = "PeerJ",
issn = "2167-8359",
publisher = "PeerJ",
number = "1",

}

TY - JOUR

T1 - An extended genovo metagenomic assembler by incorporating paired-end information

AU - Afiahayati,

AU - Sato, Kengo

AU - Sakakibara, Yasubumi

PY - 2013

Y1 - 2013

N2 - Metagenomes present assembly challenges, when assembling multiple genomes from mixed reads of multiple species. An assembler for single genomes can't adapt well when applied in this case. A metagenomic assembler, Genovo, is a de novo assembler for metagenomes under a generative probabilistic model. Genovo assembles all reads without discarding any reads in a preprocessing step, and is therefore able to extract more information from metagenomic data and, in principle, generate better assembly results. Paired end sequencing is currently widely-used yet Genovo was designed for 454 single end reads. In this research, we attempted to extend Genovo by incorporating paired-end information, named Xgenovo, so that it generates higher quality assemblies with paired end reads. First, we extended Genovo by adding a bonus parameter in the Chinese Restaurant Process used to get prior accounts for the unknown number of genomes in the sample. This bonus parameter intends for a pair of reads to be in the same contig and as an effort to solve chimera contig case. Second, we modified the sampling process of the location of a read in a contig. We used relative distance for the number of trials in the symmetric geometric distribution instead of using distance between the offset and the center of contig used in Genovo. Using this relative distance, a read sampled in the appropriate location has higher probability. Therefore a read will be mapped in the correct location. Results of extensive experiments on simulated metagenomic datasets from simple to complex with species coverage setting following uniform and lognormal distribution showed that Xgenovo can be superior to the original Genovo and the recently proposed metagenome assembler for 454 reads, MAP. Xgenovo successfully generated longer N50 than Genovo and MAP while maintaining the assembly quality even for very complex metagenomic datasets consisting of 115 species. Xgenovo also demonstrated the potential to decrease the computational cost. This means that our strategy worked well. The software and all simulated datasets are publicly available online at http://xgenovo.dna.bio.keio.ac.jp.

AB - Metagenomes present assembly challenges, when assembling multiple genomes from mixed reads of multiple species. An assembler for single genomes can't adapt well when applied in this case. A metagenomic assembler, Genovo, is a de novo assembler for metagenomes under a generative probabilistic model. Genovo assembles all reads without discarding any reads in a preprocessing step, and is therefore able to extract more information from metagenomic data and, in principle, generate better assembly results. Paired end sequencing is currently widely-used yet Genovo was designed for 454 single end reads. In this research, we attempted to extend Genovo by incorporating paired-end information, named Xgenovo, so that it generates higher quality assemblies with paired end reads. First, we extended Genovo by adding a bonus parameter in the Chinese Restaurant Process used to get prior accounts for the unknown number of genomes in the sample. This bonus parameter intends for a pair of reads to be in the same contig and as an effort to solve chimera contig case. Second, we modified the sampling process of the location of a read in a contig. We used relative distance for the number of trials in the symmetric geometric distribution instead of using distance between the offset and the center of contig used in Genovo. Using this relative distance, a read sampled in the appropriate location has higher probability. Therefore a read will be mapped in the correct location. Results of extensive experiments on simulated metagenomic datasets from simple to complex with species coverage setting following uniform and lognormal distribution showed that Xgenovo can be superior to the original Genovo and the recently proposed metagenome assembler for 454 reads, MAP. Xgenovo successfully generated longer N50 than Genovo and MAP while maintaining the assembly quality even for very complex metagenomic datasets consisting of 115 species. Xgenovo also demonstrated the potential to decrease the computational cost. This means that our strategy worked well. The software and all simulated datasets are publicly available online at http://xgenovo.dna.bio.keio.ac.jp.

KW - 454 paired end reads

KW - de novo metagenomic assembler

KW - Genovo

UR - http://www.scopus.com/inward/record.url?scp=84888378526&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84888378526&partnerID=8YFLogxK

U2 - 10.7717/peerj.196

DO - 10.7717/peerj.196

M3 - Article

VL - 2013

JO - PeerJ

JF - PeerJ

SN - 2167-8359

IS - 1

M1 - e196

ER -