Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics

Anna Takahashi, Robert Nakayama, Nanako Ishibashi, Ayano Doi, Risa Ichinohe, Yoriko Ikuyo, Teruyoshi Takahashi, Shigetaka Marui, Koji Yasuhara, Tetsuro Nakamura, Shintaro Sugita, Hiromi Sakamoto, Teruhiko Yoshida, Tadashi Hasegawa, Hiro Takahashi

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84×10-6and adjusted p value 2.99×10-3after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.

Original languageEnglish
Article numbere106801
JournalPloS one
Volume9
Issue number9
DOIs
Publication statusPublished - 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics'. Together they form a unique fingerprint.

  • Cite this

    Takahashi, A., Nakayama, R., Ishibashi, N., Doi, A., Ichinohe, R., Ikuyo, Y., Takahashi, T., Marui, S., Yasuhara, K., Nakamura, T., Sugita, S., Sakamoto, H., Yoshida, T., Hasegawa, T., & Takahashi, H. (2014). Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics. PloS one, 9(9), [e106801]. https://doi.org/10.1371/journal.pone.0106801