Abstract
This paper presents an application of Lemke's method to a class of Markov decision problems, appearing in the optimal stopping problems, and other well-known optimization problems. We consider a special case of the Markov decision problems with finitely many states, where the agent can choose one of the alternatives: getting a fixed reward immediately or paying the penalty for one term. We show that the problem can be reduced to a linear complementarity problem that can be solved by Lemke's method with the number of iterations less than the number of states. The reduced linear complementarity problem does not necessarily satisfy the copositive-plus condition. Nevertheless we show that the Lemke's method succeeds in solving the problem by proving that the problem satisfies a necessary and sufficient condition for the extended Lemke's method to compute a solution in the piecewise linear complementarity problem.
Original language | English |
---|---|
Pages (from-to) | 584-590 |
Number of pages | 7 |
Journal | European Journal of Operational Research |
Volume | 116 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1999 Aug 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Computer Science(all)
- Modelling and Simulation
- Management Science and Operations Research
- Information Systems and Management