Appropriate conditions to realize a p -wave superfluid state starting from a spin-orbit-coupled s -wave superfluid Fermi gas

T. Yamaguchi, Daisuke Inotani, Yoji Ohashi

Research output: Contribution to journalArticle

Abstract

We theoretically investigate a spin-orbit-coupled s-wave superfluid Fermi gas, to examine the time evolution of the system, after an s-wave pairing interaction is replaced by a p-wave one at t=0. In our recent paper [T. Yamaguchi, D. Inotani, and Y. Ohashi, J. Phys. Soc. Jpn. 86, 013001 (2017)JUPSAU0031-901510.7566/JPSJ.86.013001], we proposed that this manipulation may realize a p-wave superfluid Fermi gas because the p-wave pair amplitude that is induced in the s-wave superfluid state by a parity-broken antisymmetric spin-orbit interaction gives a nonvanishing p-wave superfluid order parameter, immediately after the p-wave interaction is turned on. In this paper, using a time-dependent Bogoliubov-de Gennes theory, we assess this idea under various conditions with respect to the s-wave and p-wave interaction strengths, as well as the spin-orbit coupling strength. From these, we clarify that the momentum distribution of Fermi atoms in the initial s-wave state (t<0) is a key to produce a large p-wave superfluid order parameter. Since the realization of a p-wave superfluid state is one of the most exciting and difficult challenges in cold Fermi gas physics, our results may provide a possible way to accomplish this.

Original languageEnglish
Article number053609
JournalPhysical Review A
Volume95
Issue number5
DOIs
Publication statusPublished - 2017 May 9

Fingerprint

orbits
gases
wave interaction
spin-orbit interactions
manipulators
parity
momentum
physics
atoms

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Appropriate conditions to realize a p -wave superfluid state starting from a spin-orbit-coupled s -wave superfluid Fermi gas. / Yamaguchi, T.; Inotani, Daisuke; Ohashi, Yoji.

In: Physical Review A, Vol. 95, No. 5, 053609, 09.05.2017.

Research output: Contribution to journalArticle

@article{5c6ad57a733c4d95b2aa4a26544651a9,
title = "Appropriate conditions to realize a p -wave superfluid state starting from a spin-orbit-coupled s -wave superfluid Fermi gas",
abstract = "We theoretically investigate a spin-orbit-coupled s-wave superfluid Fermi gas, to examine the time evolution of the system, after an s-wave pairing interaction is replaced by a p-wave one at t=0. In our recent paper [T. Yamaguchi, D. Inotani, and Y. Ohashi, J. Phys. Soc. Jpn. 86, 013001 (2017)JUPSAU0031-901510.7566/JPSJ.86.013001], we proposed that this manipulation may realize a p-wave superfluid Fermi gas because the p-wave pair amplitude that is induced in the s-wave superfluid state by a parity-broken antisymmetric spin-orbit interaction gives a nonvanishing p-wave superfluid order parameter, immediately after the p-wave interaction is turned on. In this paper, using a time-dependent Bogoliubov-de Gennes theory, we assess this idea under various conditions with respect to the s-wave and p-wave interaction strengths, as well as the spin-orbit coupling strength. From these, we clarify that the momentum distribution of Fermi atoms in the initial s-wave state (t<0) is a key to produce a large p-wave superfluid order parameter. Since the realization of a p-wave superfluid state is one of the most exciting and difficult challenges in cold Fermi gas physics, our results may provide a possible way to accomplish this.",
author = "T. Yamaguchi and Daisuke Inotani and Yoji Ohashi",
year = "2017",
month = "5",
day = "9",
doi = "10.1103/PhysRevA.95.053609",
language = "English",
volume = "95",
journal = "Physical Review A - Atomic, Molecular, and Optical Physics",
issn = "1050-2947",
publisher = "American Physical Society",
number = "5",

}

TY - JOUR

T1 - Appropriate conditions to realize a p -wave superfluid state starting from a spin-orbit-coupled s -wave superfluid Fermi gas

AU - Yamaguchi, T.

AU - Inotani, Daisuke

AU - Ohashi, Yoji

PY - 2017/5/9

Y1 - 2017/5/9

N2 - We theoretically investigate a spin-orbit-coupled s-wave superfluid Fermi gas, to examine the time evolution of the system, after an s-wave pairing interaction is replaced by a p-wave one at t=0. In our recent paper [T. Yamaguchi, D. Inotani, and Y. Ohashi, J. Phys. Soc. Jpn. 86, 013001 (2017)JUPSAU0031-901510.7566/JPSJ.86.013001], we proposed that this manipulation may realize a p-wave superfluid Fermi gas because the p-wave pair amplitude that is induced in the s-wave superfluid state by a parity-broken antisymmetric spin-orbit interaction gives a nonvanishing p-wave superfluid order parameter, immediately after the p-wave interaction is turned on. In this paper, using a time-dependent Bogoliubov-de Gennes theory, we assess this idea under various conditions with respect to the s-wave and p-wave interaction strengths, as well as the spin-orbit coupling strength. From these, we clarify that the momentum distribution of Fermi atoms in the initial s-wave state (t<0) is a key to produce a large p-wave superfluid order parameter. Since the realization of a p-wave superfluid state is one of the most exciting and difficult challenges in cold Fermi gas physics, our results may provide a possible way to accomplish this.

AB - We theoretically investigate a spin-orbit-coupled s-wave superfluid Fermi gas, to examine the time evolution of the system, after an s-wave pairing interaction is replaced by a p-wave one at t=0. In our recent paper [T. Yamaguchi, D. Inotani, and Y. Ohashi, J. Phys. Soc. Jpn. 86, 013001 (2017)JUPSAU0031-901510.7566/JPSJ.86.013001], we proposed that this manipulation may realize a p-wave superfluid Fermi gas because the p-wave pair amplitude that is induced in the s-wave superfluid state by a parity-broken antisymmetric spin-orbit interaction gives a nonvanishing p-wave superfluid order parameter, immediately after the p-wave interaction is turned on. In this paper, using a time-dependent Bogoliubov-de Gennes theory, we assess this idea under various conditions with respect to the s-wave and p-wave interaction strengths, as well as the spin-orbit coupling strength. From these, we clarify that the momentum distribution of Fermi atoms in the initial s-wave state (t<0) is a key to produce a large p-wave superfluid order parameter. Since the realization of a p-wave superfluid state is one of the most exciting and difficult challenges in cold Fermi gas physics, our results may provide a possible way to accomplish this.

UR - http://www.scopus.com/inward/record.url?scp=85026887924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026887924&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.95.053609

DO - 10.1103/PhysRevA.95.053609

M3 - Article

VL - 95

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

IS - 5

M1 - 053609

ER -