TY - JOUR
T1 - Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis
AU - Nakashima, Satoshi
AU - Fukagata, Koji
AU - Luhar, Mitul
N1 - Publisher Copyright:
© 2017 Cambridge University Press.
PY - 2017/10/10
Y1 - 2017/10/10
N2 - This paper extends the resolvent analysis of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336-382) to elucidate the drag reduction mechanisms for the suboptimal control laws proposed by Lee, Kim & Choi (J. Fluid Mech., vol. 358, 1998, pp. 245-258). Under the resolvent formulation, the turbulent velocity field is expressed as a linear superposition of propagating modes identified via a gain-based decomposition of the Navier-Stokes equations. This decomposition enables targeted analyses of the effects of suboptimal control on high-gain modes that serve as useful low-order models for dynamically important coherent structures such as the near-wall (NW) cycle or very-large-scale motions. The control laws generate blowing and suction at the wall that is proportional to the fluctuating streamwise (Case ST) or spanwise (Case SP) wall shear stress, with the magnitude of blowing and suction being a design parameter. It is shown that both Case ST and SP can suppress resolvent modes resembling the NW cycle. However, for Case ST, the analysis reveals that control leads to substantial amplification of flow structures that are long in the spanwise direction. Quantitative comparisons show that these predictions are broadly consistent with results obtained in previous direct numerical simulations. Further, the predicted changes in mode structure suggest that suboptimal control can be considered a modified version of opposition control. In addition to the study of modes resembling the NW cycle, this paper also considers modes of varying speed and wavelength to provide insight into the effects of suboptimal control across spectral space.
AB - This paper extends the resolvent analysis of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336-382) to elucidate the drag reduction mechanisms for the suboptimal control laws proposed by Lee, Kim & Choi (J. Fluid Mech., vol. 358, 1998, pp. 245-258). Under the resolvent formulation, the turbulent velocity field is expressed as a linear superposition of propagating modes identified via a gain-based decomposition of the Navier-Stokes equations. This decomposition enables targeted analyses of the effects of suboptimal control on high-gain modes that serve as useful low-order models for dynamically important coherent structures such as the near-wall (NW) cycle or very-large-scale motions. The control laws generate blowing and suction at the wall that is proportional to the fluctuating streamwise (Case ST) or spanwise (Case SP) wall shear stress, with the magnitude of blowing and suction being a design parameter. It is shown that both Case ST and SP can suppress resolvent modes resembling the NW cycle. However, for Case ST, the analysis reveals that control leads to substantial amplification of flow structures that are long in the spanwise direction. Quantitative comparisons show that these predictions are broadly consistent with results obtained in previous direct numerical simulations. Further, the predicted changes in mode structure suggest that suboptimal control can be considered a modified version of opposition control. In addition to the study of modes resembling the NW cycle, this paper also considers modes of varying speed and wavelength to provide insight into the effects of suboptimal control across spectral space.
KW - Drag reduction
KW - flow control
KW - turbulent flows
UR - http://www.scopus.com/inward/record.url?scp=85029500884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029500884&partnerID=8YFLogxK
U2 - 10.1017/jfm.2017.519
DO - 10.1017/jfm.2017.519
M3 - Article
AN - SCOPUS:85029500884
SN - 0022-1120
VL - 828
SP - 496
EP - 526
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -