TY - JOUR
T1 - Biochemical, metabolomic, and genetic analyses of dephospho coenzyme a kinase involved in coenzyme a biosynthesis in the human enteric parasite entamoeba histolytica
AU - Nurkanto, Arif
AU - Jeelani, Ghulam
AU - Yamamoto, Takehiro
AU - Hishiki, Takako
AU - Naito, Yoshiko
AU - Suematsu, Makoto
AU - Hashimoto, Tetsuo
AU - Nozaki, Tomoyoshi
N1 - Funding Information:
This work was supported in part by a grant for Science and Technology Research Partnership for Sustainable Development (SATREPS) from Japan Agency for Medical Research and Development (AMED) and Japan International Cooperation Agency (JICA), a grant for Research on Emerging and Reemerging Infectious Diseases from AMED, and Grants-in-Aid for Challenging Research (Exploratory) (17K19416) for Scientific Research (15H04406) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. AN was supported by a fellowship from Riset-Pro, The Ministry of Research and Higher Education (Kemenristek-DIKTI), Republic of Indonesia.
Publisher Copyright:
Copyright © 2018 Nurkanto, Jeelani, Yamamoto, Hishiki, Naito, Suematsu, Hashimoto and Nozaki.
PY - 2018/11/30
Y1 - 2018/11/30
N2 - Coenzyme A (CoA) is an essential cofactor for numerous cellular reactions in all living organisms. In the protozoan parasite Entamoeba histolytica, CoA is synthesized in a pathway consisting of four enzymes with dephospho-CoA kinase (DPCK) catalyzing the last step. However, the metabolic and physiological roles of E. histolytica DPCK remain elusive. In this study, we took biochemical, reverse genetic, and metabolomic approaches to elucidate role of DPCK in E. histolytica. The E. histolytica genome encodes two DPCK isotypes (EhDPCK1 and EhDPCK2). Epigenetic gene silencing of Ehdpck1 and Ehdpck2 caused significant reduction of DPCK activity, intracellular CoA concentrations, and also led to growth retardation in vitro, suggesting importance of DPCK for CoA synthesis and proliferation. Furthermore, metabolomic analysis showed that suppression of Ehdpck gene expression also caused decrease in the level of acetyl-CoA, and metabolites involved in amino acid, glycogen, hexosamine, nucleic acid metabolisms, chitin, and polyamine biosynthesis. The kinetic properties of E. histolytica and human DPCK showed remarkable differences, e.g., the Km values of E. histolytica and human DPCK were 58–114 and 5.2 μM toward dephospho-CoA and 15–20 and 192 μM for ATP, respectively. Phylogenetic analysis also supported the uniqueness of the amebic enzyme compared to the human counterpart. These biochemical, evolutionary features, and physiological importance of EhDPCKs indicate that EhDPCK represents the rational target for the development of anti-amebic agents.
AB - Coenzyme A (CoA) is an essential cofactor for numerous cellular reactions in all living organisms. In the protozoan parasite Entamoeba histolytica, CoA is synthesized in a pathway consisting of four enzymes with dephospho-CoA kinase (DPCK) catalyzing the last step. However, the metabolic and physiological roles of E. histolytica DPCK remain elusive. In this study, we took biochemical, reverse genetic, and metabolomic approaches to elucidate role of DPCK in E. histolytica. The E. histolytica genome encodes two DPCK isotypes (EhDPCK1 and EhDPCK2). Epigenetic gene silencing of Ehdpck1 and Ehdpck2 caused significant reduction of DPCK activity, intracellular CoA concentrations, and also led to growth retardation in vitro, suggesting importance of DPCK for CoA synthesis and proliferation. Furthermore, metabolomic analysis showed that suppression of Ehdpck gene expression also caused decrease in the level of acetyl-CoA, and metabolites involved in amino acid, glycogen, hexosamine, nucleic acid metabolisms, chitin, and polyamine biosynthesis. The kinetic properties of E. histolytica and human DPCK showed remarkable differences, e.g., the Km values of E. histolytica and human DPCK were 58–114 and 5.2 μM toward dephospho-CoA and 15–20 and 192 μM for ATP, respectively. Phylogenetic analysis also supported the uniqueness of the amebic enzyme compared to the human counterpart. These biochemical, evolutionary features, and physiological importance of EhDPCKs indicate that EhDPCK represents the rational target for the development of anti-amebic agents.
KW - Coenzyme A
KW - Drug development
KW - Entamoeba histolytica
KW - Gene silencing
KW - Metabolome
UR - http://www.scopus.com/inward/record.url?scp=85057589766&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057589766&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2018.02902
DO - 10.3389/fmicb.2018.02902
M3 - Article
AN - SCOPUS:85057589766
SN - 1664-302X
VL - 9
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
IS - NOV
M1 - 2902
ER -