Blowoff characteristics and flame structure of edge flame in the stagnation flow

Hiroyuki Torikai, Akiko Matsuo, Toshihisa Ueda, Masahiko Mizomoto

Research output: Contribution to journalArticle

Abstract

The relation between blowoff characteristics of the edge flame in a methane-air diffusion flame and its flame structure has been investigated by using our original burner. The burner can form an edge flame without premixed flame, as a hole, in the stagnation region of an axisymmetric impinging jet. Varying the hole diameter, blowoff limits and maximum flame temperature were measured for an edge flame's blowoff character, and also, for an edge flame's structure, temperature profile and flame location were measured and a thermal boundary layer around the edge flame was visualized with laser tomographic technique. It is found that all the edge flames in the stagnation flow have a critical stagnation velocity gradient, beyond which the flame can never be existed. The critical stagnation velocity gradient that represents the overall reaction rate in the edge flame zone decreases as the hole diameter is increased. The increase in a hole diameter leads to change of the edge flame's structure and to addition of two heat loss factors to the edge flame. One heat loss factor is the edge flame-wall interaction, which occurs due to decrease in the edge flame's location. Another is penetration of cold flow into a hole in the flame, which occurs due to decrease in the overlapping range of thermal boundary layer of the edge flame in the hole. These additional heat losses occur at lower stagnation velocity gradient and have stronger influence on the edge flame as a hole diameter becomes larger. Consequently the overall reaction rate in the edge flame zone is reduced by the increase in a hole diameter. Finally it is clarified that the edge flame shows qualitatively same extinction as a pure diffusion flame, when the flame zone of the edge flame lies spatially as the boundary that divides between oxidizer side and fuel side in spite of existence of a partially pre-mixture of fuel and oxidizer ahead of the reaction zone in the edge flame region.

Original languageEnglish
Pages (from-to)610-618
Number of pages9
JournalNippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B
Volume68
Issue number666
Publication statusPublished - 2002 Feb
Externally publishedYes

Fingerprint

flameout
stagnation flow
Heat losses
flames
Fuel burners
Reaction rates
Boundary layers
Methane
Temperature
Lasers
Air
thermal boundary layer
oxidizers
diffusion flames
burners
Hot Temperature
heat
gradients

Keywords

  • Combustion phenomena
  • Diffusion combustion
  • Edge flame
  • Extinction
  • Partially premixed flame

ASJC Scopus subject areas

  • Mechanical Engineering

Cite this

Blowoff characteristics and flame structure of edge flame in the stagnation flow. / Torikai, Hiroyuki; Matsuo, Akiko; Ueda, Toshihisa; Mizomoto, Masahiko.

In: Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 68, No. 666, 02.2002, p. 610-618.

Research output: Contribution to journalArticle

@article{9d6708020e6a41e69669ebf04df08fea,
title = "Blowoff characteristics and flame structure of edge flame in the stagnation flow",
abstract = "The relation between blowoff characteristics of the edge flame in a methane-air diffusion flame and its flame structure has been investigated by using our original burner. The burner can form an edge flame without premixed flame, as a hole, in the stagnation region of an axisymmetric impinging jet. Varying the hole diameter, blowoff limits and maximum flame temperature were measured for an edge flame's blowoff character, and also, for an edge flame's structure, temperature profile and flame location were measured and a thermal boundary layer around the edge flame was visualized with laser tomographic technique. It is found that all the edge flames in the stagnation flow have a critical stagnation velocity gradient, beyond which the flame can never be existed. The critical stagnation velocity gradient that represents the overall reaction rate in the edge flame zone decreases as the hole diameter is increased. The increase in a hole diameter leads to change of the edge flame's structure and to addition of two heat loss factors to the edge flame. One heat loss factor is the edge flame-wall interaction, which occurs due to decrease in the edge flame's location. Another is penetration of cold flow into a hole in the flame, which occurs due to decrease in the overlapping range of thermal boundary layer of the edge flame in the hole. These additional heat losses occur at lower stagnation velocity gradient and have stronger influence on the edge flame as a hole diameter becomes larger. Consequently the overall reaction rate in the edge flame zone is reduced by the increase in a hole diameter. Finally it is clarified that the edge flame shows qualitatively same extinction as a pure diffusion flame, when the flame zone of the edge flame lies spatially as the boundary that divides between oxidizer side and fuel side in spite of existence of a partially pre-mixture of fuel and oxidizer ahead of the reaction zone in the edge flame region.",
keywords = "Combustion phenomena, Diffusion combustion, Edge flame, Extinction, Partially premixed flame",
author = "Hiroyuki Torikai and Akiko Matsuo and Toshihisa Ueda and Masahiko Mizomoto",
year = "2002",
month = "2",
language = "English",
volume = "68",
pages = "610--618",
journal = "Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B",
issn = "0387-5016",
publisher = "Japan Society of Mechanical Engineers",
number = "666",

}

TY - JOUR

T1 - Blowoff characteristics and flame structure of edge flame in the stagnation flow

AU - Torikai, Hiroyuki

AU - Matsuo, Akiko

AU - Ueda, Toshihisa

AU - Mizomoto, Masahiko

PY - 2002/2

Y1 - 2002/2

N2 - The relation between blowoff characteristics of the edge flame in a methane-air diffusion flame and its flame structure has been investigated by using our original burner. The burner can form an edge flame without premixed flame, as a hole, in the stagnation region of an axisymmetric impinging jet. Varying the hole diameter, blowoff limits and maximum flame temperature were measured for an edge flame's blowoff character, and also, for an edge flame's structure, temperature profile and flame location were measured and a thermal boundary layer around the edge flame was visualized with laser tomographic technique. It is found that all the edge flames in the stagnation flow have a critical stagnation velocity gradient, beyond which the flame can never be existed. The critical stagnation velocity gradient that represents the overall reaction rate in the edge flame zone decreases as the hole diameter is increased. The increase in a hole diameter leads to change of the edge flame's structure and to addition of two heat loss factors to the edge flame. One heat loss factor is the edge flame-wall interaction, which occurs due to decrease in the edge flame's location. Another is penetration of cold flow into a hole in the flame, which occurs due to decrease in the overlapping range of thermal boundary layer of the edge flame in the hole. These additional heat losses occur at lower stagnation velocity gradient and have stronger influence on the edge flame as a hole diameter becomes larger. Consequently the overall reaction rate in the edge flame zone is reduced by the increase in a hole diameter. Finally it is clarified that the edge flame shows qualitatively same extinction as a pure diffusion flame, when the flame zone of the edge flame lies spatially as the boundary that divides between oxidizer side and fuel side in spite of existence of a partially pre-mixture of fuel and oxidizer ahead of the reaction zone in the edge flame region.

AB - The relation between blowoff characteristics of the edge flame in a methane-air diffusion flame and its flame structure has been investigated by using our original burner. The burner can form an edge flame without premixed flame, as a hole, in the stagnation region of an axisymmetric impinging jet. Varying the hole diameter, blowoff limits and maximum flame temperature were measured for an edge flame's blowoff character, and also, for an edge flame's structure, temperature profile and flame location were measured and a thermal boundary layer around the edge flame was visualized with laser tomographic technique. It is found that all the edge flames in the stagnation flow have a critical stagnation velocity gradient, beyond which the flame can never be existed. The critical stagnation velocity gradient that represents the overall reaction rate in the edge flame zone decreases as the hole diameter is increased. The increase in a hole diameter leads to change of the edge flame's structure and to addition of two heat loss factors to the edge flame. One heat loss factor is the edge flame-wall interaction, which occurs due to decrease in the edge flame's location. Another is penetration of cold flow into a hole in the flame, which occurs due to decrease in the overlapping range of thermal boundary layer of the edge flame in the hole. These additional heat losses occur at lower stagnation velocity gradient and have stronger influence on the edge flame as a hole diameter becomes larger. Consequently the overall reaction rate in the edge flame zone is reduced by the increase in a hole diameter. Finally it is clarified that the edge flame shows qualitatively same extinction as a pure diffusion flame, when the flame zone of the edge flame lies spatially as the boundary that divides between oxidizer side and fuel side in spite of existence of a partially pre-mixture of fuel and oxidizer ahead of the reaction zone in the edge flame region.

KW - Combustion phenomena

KW - Diffusion combustion

KW - Edge flame

KW - Extinction

KW - Partially premixed flame

UR - http://www.scopus.com/inward/record.url?scp=0036487892&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036487892&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0036487892

VL - 68

SP - 610

EP - 618

JO - Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B

JF - Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B

SN - 0387-5016

IS - 666

ER -