Bone and gingival connective tissue responses towards nanosecond-pulsed laser-treated titanium implants

Yugo Fukayo, Tsuyoshi Amemiya, Kazutoshi Nakaoka, Masayoshi Mizutani, Jun Komotori, Yoshiki Hamada, Tohru Hayakawa

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The aim of this study was to evaluate bone and gingival connective tissue responses towards nanosecond-pulsed laser-treated titanium implants. A Nd:YVO4 nanosecond-pulse laser with a defocus technique was used to modify the surfaces of two types of cylindrical titanium implants. One had a 3.5 mm diameter and 7.0 mm length (φ3.5 Ti) to assess rabbit bone responses; the other a 1.0 mm diameter and 4.5 mm length (φ1.0 Ti) to assess rat gingival connective tissue responses. Laser-treated titanium implants, a φ3.5 Laser-Ti and φ1.0 Laser-Ti, were obtained by defocus irradiation. Collagen immobilized φ1.0Laser-Ti (φ1.0 Coll/Laser-Ti) implants were obtained by a tresyl chloride-activated method. Laser-Ti surfaces had micro-scale roughened oxide layers and parallel arranged grooves. Sa (average roughness) and Sdr (interfacial area ratio) values of the Laser-Ti were significantly higher than those of Ti (titanium) implants (p

Original languageEnglish
Pages (from-to)181-194
Number of pages14
JournalJournal of Hard Tissue Biology
Volume25
Issue number2
DOIs
Publication statusPublished - 2016 Apr 12

Keywords

  • Bone-to-implant contact
  • Gingival connective tissue attachment
  • Nanosecond-pulsed laser
  • Titanium implant
  • Tresyl chloride

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Biomaterials
  • Medicine (miscellaneous)
  • Orthopedics and Sports Medicine
  • Dentistry(all)

Fingerprint Dive into the research topics of 'Bone and gingival connective tissue responses towards nanosecond-pulsed laser-treated titanium implants'. Together they form a unique fingerprint.

Cite this