Bowl Inversion and Electronic Switching of Buckybowls on Gold

Shintaro Fujii, Maxim Ziatdinov, Shuhei Higashibayashi, Hidehiro Sakurai, Manabu Kiguchi

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp2-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.

Original languageEnglish
Pages (from-to)12142-12149
Number of pages8
JournalJournal of the American Chemical Society
Volume138
Issue number37
DOIs
Publication statusPublished - 2016 Sept 21
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Bowl Inversion and Electronic Switching of Buckybowls on Gold'. Together they form a unique fingerprint.

Cite this