TY - JOUR
T1 - Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors
AU - Wang, Xin
AU - Furukawa, Tatsuhiko
AU - Nitanda, Takao
AU - Okamoto, Mika
AU - Sugimoto, Yoshikazu
AU - Akiyama, Shin Ichi
AU - Baba, Masanori
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Breast cancer resistance protein (BCRP/ABCG2) is a novel member of ATP-binding cassette transporters, which induce multidrug resistance in cancer cells. We found that a high level of BCRP expression in CD4+ T cells conferred cellular resistance to human immunodeficiency virus type-1 (HIV-1) nucleoside reverse transcriptase inhibitors. The cell line MT-4/DOX500 was established through the long-term culture of MT-4 cells in the presence of doxorubicin (DOX) and had reduced sensitivity to not only DOX but also zidovudine (AZT). MT-4/DOX500 cells showed reduced intracellular accumulation and retention of DOX and increased ATP-dependent rhodamine 123 efflux. The cells were also resistant to several anticancer agents such as mitoxantrone, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin, and 7-ethyl-10-hydroxycamptothecin. AZT was 7.5-fold less inhibitory to HIV-1 replication in MT-4/DOX500 cells than in MT-4 cells. Furthermore, the anti-HIV-1 activity of lamivudine was severely impaired in MT-4/DOX500 cells. In contrast, the antiviral activity of non-nucleoside reverse transcriptase inhibitors and protease inhibitors was not affected in the cells. MT-4/DOX500 cells expressed glycosylated BCRP but not P-glycoprotein (ABCB1), multidrug resistance protein 1, 2, or 4 (ABCC1, -2, or -4), or lung resistance-related protein. In addition, the BCRP-specific inhibitor fumitremorgin C completely abolished the resistance of MT-4/DOX500 cells to AZT as well as to DOX. An analysis for intracellular metabolism of AZT suggests that the resistance is attributed to the increase of ATP-dependent efflux of its metabolites, presumably AZT 5′-monophosphate, in MT-4/DOX500 cells.
AB - Breast cancer resistance protein (BCRP/ABCG2) is a novel member of ATP-binding cassette transporters, which induce multidrug resistance in cancer cells. We found that a high level of BCRP expression in CD4+ T cells conferred cellular resistance to human immunodeficiency virus type-1 (HIV-1) nucleoside reverse transcriptase inhibitors. The cell line MT-4/DOX500 was established through the long-term culture of MT-4 cells in the presence of doxorubicin (DOX) and had reduced sensitivity to not only DOX but also zidovudine (AZT). MT-4/DOX500 cells showed reduced intracellular accumulation and retention of DOX and increased ATP-dependent rhodamine 123 efflux. The cells were also resistant to several anticancer agents such as mitoxantrone, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin, and 7-ethyl-10-hydroxycamptothecin. AZT was 7.5-fold less inhibitory to HIV-1 replication in MT-4/DOX500 cells than in MT-4 cells. Furthermore, the anti-HIV-1 activity of lamivudine was severely impaired in MT-4/DOX500 cells. In contrast, the antiviral activity of non-nucleoside reverse transcriptase inhibitors and protease inhibitors was not affected in the cells. MT-4/DOX500 cells expressed glycosylated BCRP but not P-glycoprotein (ABCB1), multidrug resistance protein 1, 2, or 4 (ABCC1, -2, or -4), or lung resistance-related protein. In addition, the BCRP-specific inhibitor fumitremorgin C completely abolished the resistance of MT-4/DOX500 cells to AZT as well as to DOX. An analysis for intracellular metabolism of AZT suggests that the resistance is attributed to the increase of ATP-dependent efflux of its metabolites, presumably AZT 5′-monophosphate, in MT-4/DOX500 cells.
UR - http://www.scopus.com/inward/record.url?scp=0037218382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037218382&partnerID=8YFLogxK
U2 - 10.1124/mol.63.1.65
DO - 10.1124/mol.63.1.65
M3 - Article
C2 - 12488537
AN - SCOPUS:0037218382
SN - 0026-895X
VL - 63
SP - 65
EP - 72
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 1
ER -