BRein memory

A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS

Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shimpei Sato, Hiroki Nakahara, Masayuki Ikebe, Tetsuya Asai, Shinya Takamaeda-Yamazaki, Tadahiro Kuroda, Masato Motomura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Citations (Scopus)

Abstract

A versatile reconfigurable accelerator for binary/ternary deep neural networks (DNNs) is presented. It features a massively parallel in-memory processing architecture and stores varieties of binary/ternary DNNs with a maximum of 13 layers, 4.2 K neurons, and 0.8 M synapses on chip. The 0.6 W, 1.4 TOPS chip achieves performance and energy efficiency that is 10-102 and 102-104 times better than a CPU/GPU/FPGA.

Original languageEnglish
Title of host publication2017 Symposium on VLSI Circuits, VLSI Circuits 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
PagesC24-C25
ISBN (Electronic)9784863486065
DOIs
Publication statusPublished - 2017 Aug 10
Event31st Symposium on VLSI Circuits, VLSI Circuits 2017 - Kyoto, Japan
Duration: 2017 Jun 52017 Jun 8

Other

Other31st Symposium on VLSI Circuits, VLSI Circuits 2017
CountryJapan
CityKyoto
Period17/6/517/6/8

Fingerprint

Neurons
Particle accelerators
Data storage equipment
Program processors
Energy efficiency
Field programmable gate arrays (FPGA)
Processing
Deep neural networks
TOPS
Graphics processing unit

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Cite this

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., ... Motomura, M. (2017). BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. In 2017 Symposium on VLSI Circuits, VLSI Circuits 2017 (pp. C24-C25). [8008533] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.23919/VLSIC.2017.8008533

BRein memory : A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. / Ando, Kota; Ueyoshi, Kodai; Orimo, Kentaro; Yonekawa, Haruyoshi; Sato, Shimpei; Nakahara, Hiroki; Ikebe, Masayuki; Asai, Tetsuya; Takamaeda-Yamazaki, Shinya; Kuroda, Tadahiro; Motomura, Masato.

2017 Symposium on VLSI Circuits, VLSI Circuits 2017. Institute of Electrical and Electronics Engineers Inc., 2017. p. C24-C25 8008533.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ando, K, Ueyoshi, K, Orimo, K, Yonekawa, H, Sato, S, Nakahara, H, Ikebe, M, Asai, T, Takamaeda-Yamazaki, S, Kuroda, T & Motomura, M 2017, BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. in 2017 Symposium on VLSI Circuits, VLSI Circuits 2017., 8008533, Institute of Electrical and Electronics Engineers Inc., pp. C24-C25, 31st Symposium on VLSI Circuits, VLSI Circuits 2017, Kyoto, Japan, 17/6/5. https://doi.org/10.23919/VLSIC.2017.8008533
Ando K, Ueyoshi K, Orimo K, Yonekawa H, Sato S, Nakahara H et al. BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. In 2017 Symposium on VLSI Circuits, VLSI Circuits 2017. Institute of Electrical and Electronics Engineers Inc. 2017. p. C24-C25. 8008533 https://doi.org/10.23919/VLSIC.2017.8008533
Ando, Kota ; Ueyoshi, Kodai ; Orimo, Kentaro ; Yonekawa, Haruyoshi ; Sato, Shimpei ; Nakahara, Hiroki ; Ikebe, Masayuki ; Asai, Tetsuya ; Takamaeda-Yamazaki, Shinya ; Kuroda, Tadahiro ; Motomura, Masato. / BRein memory : A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. 2017 Symposium on VLSI Circuits, VLSI Circuits 2017. Institute of Electrical and Electronics Engineers Inc., 2017. pp. C24-C25
@inproceedings{cce23408ae1d490f8857d99489b730d0,
title = "BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS",
abstract = "A versatile reconfigurable accelerator for binary/ternary deep neural networks (DNNs) is presented. It features a massively parallel in-memory processing architecture and stores varieties of binary/ternary DNNs with a maximum of 13 layers, 4.2 K neurons, and 0.8 M synapses on chip. The 0.6 W, 1.4 TOPS chip achieves performance and energy efficiency that is 10-102 and 102-104 times better than a CPU/GPU/FPGA.",
author = "Kota Ando and Kodai Ueyoshi and Kentaro Orimo and Haruyoshi Yonekawa and Shimpei Sato and Hiroki Nakahara and Masayuki Ikebe and Tetsuya Asai and Shinya Takamaeda-Yamazaki and Tadahiro Kuroda and Masato Motomura",
year = "2017",
month = "8",
day = "10",
doi = "10.23919/VLSIC.2017.8008533",
language = "English",
pages = "C24--C25",
booktitle = "2017 Symposium on VLSI Circuits, VLSI Circuits 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - GEN

T1 - BRein memory

T2 - A 13-layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS

AU - Ando, Kota

AU - Ueyoshi, Kodai

AU - Orimo, Kentaro

AU - Yonekawa, Haruyoshi

AU - Sato, Shimpei

AU - Nakahara, Hiroki

AU - Ikebe, Masayuki

AU - Asai, Tetsuya

AU - Takamaeda-Yamazaki, Shinya

AU - Kuroda, Tadahiro

AU - Motomura, Masato

PY - 2017/8/10

Y1 - 2017/8/10

N2 - A versatile reconfigurable accelerator for binary/ternary deep neural networks (DNNs) is presented. It features a massively parallel in-memory processing architecture and stores varieties of binary/ternary DNNs with a maximum of 13 layers, 4.2 K neurons, and 0.8 M synapses on chip. The 0.6 W, 1.4 TOPS chip achieves performance and energy efficiency that is 10-102 and 102-104 times better than a CPU/GPU/FPGA.

AB - A versatile reconfigurable accelerator for binary/ternary deep neural networks (DNNs) is presented. It features a massively parallel in-memory processing architecture and stores varieties of binary/ternary DNNs with a maximum of 13 layers, 4.2 K neurons, and 0.8 M synapses on chip. The 0.6 W, 1.4 TOPS chip achieves performance and energy efficiency that is 10-102 and 102-104 times better than a CPU/GPU/FPGA.

UR - http://www.scopus.com/inward/record.url?scp=85034096665&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85034096665&partnerID=8YFLogxK

U2 - 10.23919/VLSIC.2017.8008533

DO - 10.23919/VLSIC.2017.8008533

M3 - Conference contribution

SP - C24-C25

BT - 2017 Symposium on VLSI Circuits, VLSI Circuits 2017

PB - Institute of Electrical and Electronics Engineers Inc.

ER -