Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator

J. Adam, X. Bai, A. Baldini, E. Baracchini, C. Bemporad, G. Boca, P. W. Cattaneo, G. Cavoto, F. Cei, C. Cerri, M. Corbo, N. Curalli, A. De Bari, M. De Gerone, T. Doke, S. Dussoni, J. Egger, K. Fratini, Y. Fujii, L. Galli & 44 others G. Gallucci, F. Gatti, B. Golden, M. Grassi, D. N. Grigoriev, T. Haruyama, M. Hildebrandt, F. Ignatov, T. Iwamoto, P. R. Kettle, B. I. Khazin, O. Kiselev, A. Korenchenko, N. Kravchuk, A. Maki, S. Mihara, W. Molzon, T. Mori, D. Mzavia, H. Natori, D. Nicolò, H. Nishiguchi, Yasuhiro Nishimura, W. Ootani, M. Panareo, A. Papa, R. Pazzi, G. Piredda, A. Popov, F. Renga, S. Ritt, M. Rossella, R. Sawada, F. Sergiampietri, G. Signorelli, F. Tenchini, C. Topchyan, Y. Uchiyama, R. Valle, C. Voena, F. Xiao, A. Yamamoto, Yu V. Yudin, D. Zanello

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

The MEG experiment at PSI searches for the decay μ→eγ at a level of ≈10 -13 on the branching ratio BR(μ→eγ/ μ→tot), well beyond the present experimental limit (BR≤1. 2×10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (≈10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a CockcroftWalton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μbeam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction Li(p,γ)37Be48 or two coincident γs (11.67 and 4.4 MeV) from the reaction B(p, γ1 )511C612. The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter ( σ Eγ/ =3.85±0.15% at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters ( σΔt =0.450±0.015ns).

Original languageEnglish
Pages (from-to)19-32
Number of pages14
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume641
Issue number1
DOIs
Publication statusPublished - 2011 Jun 11
Externally publishedYes

Fingerprint

Proton beams
Calorimeters
proton beams
Particle accelerators
calorimeters
Spectrometers
accelerators
time measurement
Calibration
spectrometers
bellows
Bellows
protons
Monitoring
grand unified theory
Calorimetry
calibrating
travel
insertion
muons

Keywords

  • γrays
  • Beam monitoring
  • Calibration
  • CockcroftWalton accelerator

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation

Cite this

Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator. / Adam, J.; Bai, X.; Baldini, A.; Baracchini, E.; Bemporad, C.; Boca, G.; Cattaneo, P. W.; Cavoto, G.; Cei, F.; Cerri, C.; Corbo, M.; Curalli, N.; De Bari, A.; De Gerone, M.; Doke, T.; Dussoni, S.; Egger, J.; Fratini, K.; Fujii, Y.; Galli, L.; Gallucci, G.; Gatti, F.; Golden, B.; Grassi, M.; Grigoriev, D. N.; Haruyama, T.; Hildebrandt, M.; Ignatov, F.; Iwamoto, T.; Kettle, P. R.; Khazin, B. I.; Kiselev, O.; Korenchenko, A.; Kravchuk, N.; Maki, A.; Mihara, S.; Molzon, W.; Mori, T.; Mzavia, D.; Natori, H.; Nicolò, D.; Nishiguchi, H.; Nishimura, Yasuhiro; Ootani, W.; Panareo, M.; Papa, A.; Pazzi, R.; Piredda, G.; Popov, A.; Renga, F.; Ritt, S.; Rossella, M.; Sawada, R.; Sergiampietri, F.; Signorelli, G.; Tenchini, F.; Topchyan, C.; Uchiyama, Y.; Valle, R.; Voena, C.; Xiao, F.; Yamamoto, A.; Yudin, Yu V.; Zanello, D.

In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 641, No. 1, 11.06.2011, p. 19-32.

Research output: Contribution to journalArticle

Adam, J, Bai, X, Baldini, A, Baracchini, E, Bemporad, C, Boca, G, Cattaneo, PW, Cavoto, G, Cei, F, Cerri, C, Corbo, M, Curalli, N, De Bari, A, De Gerone, M, Doke, T, Dussoni, S, Egger, J, Fratini, K, Fujii, Y, Galli, L, Gallucci, G, Gatti, F, Golden, B, Grassi, M, Grigoriev, DN, Haruyama, T, Hildebrandt, M, Ignatov, F, Iwamoto, T, Kettle, PR, Khazin, BI, Kiselev, O, Korenchenko, A, Kravchuk, N, Maki, A, Mihara, S, Molzon, W, Mori, T, Mzavia, D, Natori, H, Nicolò, D, Nishiguchi, H, Nishimura, Y, Ootani, W, Panareo, M, Papa, A, Pazzi, R, Piredda, G, Popov, A, Renga, F, Ritt, S, Rossella, M, Sawada, R, Sergiampietri, F, Signorelli, G, Tenchini, F, Topchyan, C, Uchiyama, Y, Valle, R, Voena, C, Xiao, F, Yamamoto, A, Yudin, YV & Zanello, D 2011, 'Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator', Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 641, no. 1, pp. 19-32. https://doi.org/10.1016/j.nima.2011.03.048
Adam, J. ; Bai, X. ; Baldini, A. ; Baracchini, E. ; Bemporad, C. ; Boca, G. ; Cattaneo, P. W. ; Cavoto, G. ; Cei, F. ; Cerri, C. ; Corbo, M. ; Curalli, N. ; De Bari, A. ; De Gerone, M. ; Doke, T. ; Dussoni, S. ; Egger, J. ; Fratini, K. ; Fujii, Y. ; Galli, L. ; Gallucci, G. ; Gatti, F. ; Golden, B. ; Grassi, M. ; Grigoriev, D. N. ; Haruyama, T. ; Hildebrandt, M. ; Ignatov, F. ; Iwamoto, T. ; Kettle, P. R. ; Khazin, B. I. ; Kiselev, O. ; Korenchenko, A. ; Kravchuk, N. ; Maki, A. ; Mihara, S. ; Molzon, W. ; Mori, T. ; Mzavia, D. ; Natori, H. ; Nicolò, D. ; Nishiguchi, H. ; Nishimura, Yasuhiro ; Ootani, W. ; Panareo, M. ; Papa, A. ; Pazzi, R. ; Piredda, G. ; Popov, A. ; Renga, F. ; Ritt, S. ; Rossella, M. ; Sawada, R. ; Sergiampietri, F. ; Signorelli, G. ; Tenchini, F. ; Topchyan, C. ; Uchiyama, Y. ; Valle, R. ; Voena, C. ; Xiao, F. ; Yamamoto, A. ; Yudin, Yu V. ; Zanello, D. / Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator. In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011 ; Vol. 641, No. 1. pp. 19-32.
@article{9364cb00d51146128f62b9e928b95f84,
title = "Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator",
abstract = "The MEG experiment at PSI searches for the decay μ→eγ at a level of ≈10 -13 on the branching ratio BR(μ→eγ/ μ→tot), well beyond the present experimental limit (BR≤1. 2×10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (≈10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a CockcroftWalton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μbeam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction Li(p,γ)37Be48 or two coincident γs (11.67 and 4.4 MeV) from the reaction B(p, γ1 )511C612. The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter ( σ Eγ/ Eγ =3.85±0.15{\%} at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters ( σΔt =0.450±0.015ns).",
keywords = "γrays, Beam monitoring, Calibration, CockcroftWalton accelerator",
author = "J. Adam and X. Bai and A. Baldini and E. Baracchini and C. Bemporad and G. Boca and Cattaneo, {P. W.} and G. Cavoto and F. Cei and C. Cerri and M. Corbo and N. Curalli and {De Bari}, A. and {De Gerone}, M. and T. Doke and S. Dussoni and J. Egger and K. Fratini and Y. Fujii and L. Galli and G. Gallucci and F. Gatti and B. Golden and M. Grassi and Grigoriev, {D. N.} and T. Haruyama and M. Hildebrandt and F. Ignatov and T. Iwamoto and Kettle, {P. R.} and Khazin, {B. I.} and O. Kiselev and A. Korenchenko and N. Kravchuk and A. Maki and S. Mihara and W. Molzon and T. Mori and D. Mzavia and H. Natori and D. Nicol{\`o} and H. Nishiguchi and Yasuhiro Nishimura and W. Ootani and M. Panareo and A. Papa and R. Pazzi and G. Piredda and A. Popov and F. Renga and S. Ritt and M. Rossella and R. Sawada and F. Sergiampietri and G. Signorelli and F. Tenchini and C. Topchyan and Y. Uchiyama and R. Valle and C. Voena and F. Xiao and A. Yamamoto and Yudin, {Yu V.} and D. Zanello",
year = "2011",
month = "6",
day = "11",
doi = "10.1016/j.nima.2011.03.048",
language = "English",
volume = "641",
pages = "19--32",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Calibration and monitoring of the MEG experiment by a proton beam from a CockcroftWalton accelerator

AU - Adam, J.

AU - Bai, X.

AU - Baldini, A.

AU - Baracchini, E.

AU - Bemporad, C.

AU - Boca, G.

AU - Cattaneo, P. W.

AU - Cavoto, G.

AU - Cei, F.

AU - Cerri, C.

AU - Corbo, M.

AU - Curalli, N.

AU - De Bari, A.

AU - De Gerone, M.

AU - Doke, T.

AU - Dussoni, S.

AU - Egger, J.

AU - Fratini, K.

AU - Fujii, Y.

AU - Galli, L.

AU - Gallucci, G.

AU - Gatti, F.

AU - Golden, B.

AU - Grassi, M.

AU - Grigoriev, D. N.

AU - Haruyama, T.

AU - Hildebrandt, M.

AU - Ignatov, F.

AU - Iwamoto, T.

AU - Kettle, P. R.

AU - Khazin, B. I.

AU - Kiselev, O.

AU - Korenchenko, A.

AU - Kravchuk, N.

AU - Maki, A.

AU - Mihara, S.

AU - Molzon, W.

AU - Mori, T.

AU - Mzavia, D.

AU - Natori, H.

AU - Nicolò, D.

AU - Nishiguchi, H.

AU - Nishimura, Yasuhiro

AU - Ootani, W.

AU - Panareo, M.

AU - Papa, A.

AU - Pazzi, R.

AU - Piredda, G.

AU - Popov, A.

AU - Renga, F.

AU - Ritt, S.

AU - Rossella, M.

AU - Sawada, R.

AU - Sergiampietri, F.

AU - Signorelli, G.

AU - Tenchini, F.

AU - Topchyan, C.

AU - Uchiyama, Y.

AU - Valle, R.

AU - Voena, C.

AU - Xiao, F.

AU - Yamamoto, A.

AU - Yudin, Yu V.

AU - Zanello, D.

PY - 2011/6/11

Y1 - 2011/6/11

N2 - The MEG experiment at PSI searches for the decay μ→eγ at a level of ≈10 -13 on the branching ratio BR(μ→eγ/ μ→tot), well beyond the present experimental limit (BR≤1. 2×10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (≈10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a CockcroftWalton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μbeam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction Li(p,γ)37Be48 or two coincident γs (11.67 and 4.4 MeV) from the reaction B(p, γ1 )511C612. The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter ( σ Eγ/ Eγ =3.85±0.15% at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters ( σΔt =0.450±0.015ns).

AB - The MEG experiment at PSI searches for the decay μ→eγ at a level of ≈10 -13 on the branching ratio BR(μ→eγ/ μ→tot), well beyond the present experimental limit (BR≤1. 2×10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (≈10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a CockcroftWalton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μbeam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction Li(p,γ)37Be48 or two coincident γs (11.67 and 4.4 MeV) from the reaction B(p, γ1 )511C612. The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter ( σ Eγ/ Eγ =3.85±0.15% at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters ( σΔt =0.450±0.015ns).

KW - γrays

KW - Beam monitoring

KW - Calibration

KW - CockcroftWalton accelerator

UR - http://www.scopus.com/inward/record.url?scp=79957522346&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79957522346&partnerID=8YFLogxK

U2 - 10.1016/j.nima.2011.03.048

DO - 10.1016/j.nima.2011.03.048

M3 - Article

VL - 641

SP - 19

EP - 32

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

IS - 1

ER -