Cell range expansion using distributed Q-learning in heterogeneous networks Advances in 4G Wireless and beyond

Toshihito Kudo, Tomoaki Ohtsuki

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Cell range expansion (CRE) is a technique to expand a pico cell range virtually by adding a bias value to the pico received power, instead of increasing transmit power of pico base station (PBS), so that coverage, cell-edge throughput, and overall network throughput are improved. Many studies have focused on inter-cell interference coordination (ICIC) in CRE, because macro base station's (MBS's) strong transmit power harms the expanded region (ER) user equipments (UEs) that select PBSs by bias value. Optimal bias value that minimizes the number of outage UEs depends on several factors such as the dividing ratio of radio resources between MBSs and PBSs. In addition it varies from UE to another. Thus, most articles use the common bias value among all UEs determined by trial-and-error method. In this article, we propose a scheme to determine the bias value of each UE by using Q-learning algorithm where each UE learns its bias value that minimizes the number of outage UEs from its past experience independently. Simulation results show that, compared to the scheme using optimal common bias value, the proposed scheme reduces the number of outage UEs and improves network throughput.

Original languageEnglish
Article number61
JournalEurasip Journal on Wireless Communications and Networking
Volume2013
Issue number1
DOIs
Publication statusPublished - 2013

Fingerprint

Heterogeneous networks
Outages
Throughput
Base stations
Learning algorithms
Macros

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Signal Processing
  • Computer Science Applications

Cite this

@article{51799fe54fb74f4fb3c02e3963cff952,
title = "Cell range expansion using distributed Q-learning in heterogeneous networks Advances in 4G Wireless and beyond",
abstract = "Cell range expansion (CRE) is a technique to expand a pico cell range virtually by adding a bias value to the pico received power, instead of increasing transmit power of pico base station (PBS), so that coverage, cell-edge throughput, and overall network throughput are improved. Many studies have focused on inter-cell interference coordination (ICIC) in CRE, because macro base station's (MBS's) strong transmit power harms the expanded region (ER) user equipments (UEs) that select PBSs by bias value. Optimal bias value that minimizes the number of outage UEs depends on several factors such as the dividing ratio of radio resources between MBSs and PBSs. In addition it varies from UE to another. Thus, most articles use the common bias value among all UEs determined by trial-and-error method. In this article, we propose a scheme to determine the bias value of each UE by using Q-learning algorithm where each UE learns its bias value that minimizes the number of outage UEs from its past experience independently. Simulation results show that, compared to the scheme using optimal common bias value, the proposed scheme reduces the number of outage UEs and improves network throughput.",
author = "Toshihito Kudo and Tomoaki Ohtsuki",
year = "2013",
doi = "10.1186/1687-1499-2013-61",
language = "English",
volume = "2013",
journal = "Eurasip Journal on Wireless Communications and Networking",
issn = "1687-1472",
publisher = "Springer Publishing Company",
number = "1",

}

TY - JOUR

T1 - Cell range expansion using distributed Q-learning in heterogeneous networks Advances in 4G Wireless and beyond

AU - Kudo, Toshihito

AU - Ohtsuki, Tomoaki

PY - 2013

Y1 - 2013

N2 - Cell range expansion (CRE) is a technique to expand a pico cell range virtually by adding a bias value to the pico received power, instead of increasing transmit power of pico base station (PBS), so that coverage, cell-edge throughput, and overall network throughput are improved. Many studies have focused on inter-cell interference coordination (ICIC) in CRE, because macro base station's (MBS's) strong transmit power harms the expanded region (ER) user equipments (UEs) that select PBSs by bias value. Optimal bias value that minimizes the number of outage UEs depends on several factors such as the dividing ratio of radio resources between MBSs and PBSs. In addition it varies from UE to another. Thus, most articles use the common bias value among all UEs determined by trial-and-error method. In this article, we propose a scheme to determine the bias value of each UE by using Q-learning algorithm where each UE learns its bias value that minimizes the number of outage UEs from its past experience independently. Simulation results show that, compared to the scheme using optimal common bias value, the proposed scheme reduces the number of outage UEs and improves network throughput.

AB - Cell range expansion (CRE) is a technique to expand a pico cell range virtually by adding a bias value to the pico received power, instead of increasing transmit power of pico base station (PBS), so that coverage, cell-edge throughput, and overall network throughput are improved. Many studies have focused on inter-cell interference coordination (ICIC) in CRE, because macro base station's (MBS's) strong transmit power harms the expanded region (ER) user equipments (UEs) that select PBSs by bias value. Optimal bias value that minimizes the number of outage UEs depends on several factors such as the dividing ratio of radio resources between MBSs and PBSs. In addition it varies from UE to another. Thus, most articles use the common bias value among all UEs determined by trial-and-error method. In this article, we propose a scheme to determine the bias value of each UE by using Q-learning algorithm where each UE learns its bias value that minimizes the number of outage UEs from its past experience independently. Simulation results show that, compared to the scheme using optimal common bias value, the proposed scheme reduces the number of outage UEs and improves network throughput.

UR - http://www.scopus.com/inward/record.url?scp=84879570398&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879570398&partnerID=8YFLogxK

U2 - 10.1186/1687-1499-2013-61

DO - 10.1186/1687-1499-2013-61

M3 - Article

AN - SCOPUS:84879570398

VL - 2013

JO - Eurasip Journal on Wireless Communications and Networking

JF - Eurasip Journal on Wireless Communications and Networking

SN - 1687-1472

IS - 1

M1 - 61

ER -