TY - JOUR
T1 - Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II
AU - Takenaka, Tsuneo
AU - Suzuki, Hiromichi
AU - Fujiwara, Keiji
AU - Kanno, Yoshihiko
AU - Ohno, Yoichi
AU - Hayashi, Koichi
AU - Nagahama, Takahiko
AU - Saruta, Takao
PY - 1997/10/15
Y1 - 1997/10/15
N2 - To assess cellular mechanisms mediating afferent (AA) and efferent arteriolar (EA) constriction by angiotensin II (AngII), experiments were performed using isolated perfused hydronephrotic kidneys. In the first series of studies, AngII (0.3 nM) constricted AAs and EAs by 29±3 (n = 8, P < 0.01) and 27±3% (n = 8, P < 0.01), respectively. Subsequent addition of nifedipine restored AA but not EA diameter. Manganese (8 mM) reversed EA constriction by 65±9% (P < 0.01). In the second group, the addition of N-ethylmaleimide (10 μM), a Gi/Go protein antagonist, abolished AngII-induced EA (n = 6) but not AA constriction (n = 6). In the third series of experiments, treatment with 2-nitro-4-carboxyphenyl-N,N-diphenyl-carbamate (200 μM), a phospholipase C inhibitor, blocked both AA and EA constriction by AngII (n = 6 for each). In the fourth group, thapsigargin (1 μM) prevented AngII-induced AA constriction (n = 8) and attenuated EA constriction (8±2% decrease in EA diameter at 0.3 nM AngII, n = 8, P < 0.05). Subsequent addition of manganese (8 mM) reversed EA constriction. Our data provide evidence that in AAs, AngII stimulates phospholipase C with subsequent calcium mobilization that is required to activate voltage-dependent calcium channels. Our results suggest that AngII constricts EAs by activating phospholipase C via the Gi protein family, thereby eliciting both calcium mobilization and calcium entry.
AB - To assess cellular mechanisms mediating afferent (AA) and efferent arteriolar (EA) constriction by angiotensin II (AngII), experiments were performed using isolated perfused hydronephrotic kidneys. In the first series of studies, AngII (0.3 nM) constricted AAs and EAs by 29±3 (n = 8, P < 0.01) and 27±3% (n = 8, P < 0.01), respectively. Subsequent addition of nifedipine restored AA but not EA diameter. Manganese (8 mM) reversed EA constriction by 65±9% (P < 0.01). In the second group, the addition of N-ethylmaleimide (10 μM), a Gi/Go protein antagonist, abolished AngII-induced EA (n = 6) but not AA constriction (n = 6). In the third series of experiments, treatment with 2-nitro-4-carboxyphenyl-N,N-diphenyl-carbamate (200 μM), a phospholipase C inhibitor, blocked both AA and EA constriction by AngII (n = 6 for each). In the fourth group, thapsigargin (1 μM) prevented AngII-induced AA constriction (n = 8) and attenuated EA constriction (8±2% decrease in EA diameter at 0.3 nM AngII, n = 8, P < 0.05). Subsequent addition of manganese (8 mM) reversed EA constriction. Our data provide evidence that in AAs, AngII stimulates phospholipase C with subsequent calcium mobilization that is required to activate voltage-dependent calcium channels. Our results suggest that AngII constricts EAs by activating phospholipase C via the Gi protein family, thereby eliciting both calcium mobilization and calcium entry.
KW - Calcium entry
KW - Calcium mobilization
KW - GTP-binding protein
KW - Glomerular arteriole
KW - Phospholipase C
UR - http://www.scopus.com/inward/record.url?scp=0030829811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030829811&partnerID=8YFLogxK
U2 - 10.1172/JCI119745
DO - 10.1172/JCI119745
M3 - Article
C2 - 9329977
AN - SCOPUS:0030829811
SN - 0021-9738
VL - 100
SP - 2107
EP - 2114
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 8
ER -