Characteristics of ultrasound propagation in a magnetic fluid under uniform magnetic field

Masaaki Motozawa, Tatsuo Sawada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

When an external magnetic field is applied to a magnetic fluid, some of the colloidal particles coagulate and form chain-like clusters. Properties of ultrasonic propagation wave are changed by these chain-like clusters. We carried out measurement of the ultrasonic propagation velocity in a magnetic fluid. Measurement were made by changing the magnetic field intensity from 0 mT to 570 mT, and the angle between the magnetic field direction and direction of the ultrasound propagation from 0° to 180°. The ultrasound frequencies were 1 MHz, 2 MHz and 4 MHz. Some of experimental results for the characteristics of ultrasound propagation in a magnetic fluid under a uniform magnetic field were reported.

Original languageEnglish
Title of host publicationProceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
Subtitle of host publicationVolume 1, Part C, Forums
EditorsA. Ogut, Y. Tsuji, M. Kawahashi, A. Ogut, Y. Tsuji, M. Kawahashi
Pages1577-1580
Number of pages4
Publication statusPublished - 2003 Dec 1
Event4th ASME/JSME Joint Fluids Engineering Conference - Honolulu, HI, United States
Duration: 2003 Jul 62003 Jul 10

Publication series

NameProceedings of the ASME/JSME Joint Fluids Engineering Conference
Volume1 C

Other

Other4th ASME/JSME Joint Fluids Engineering Conference
CountryUnited States
CityHonolulu, HI
Period03/7/603/7/10

    Fingerprint

ASJC Scopus subject areas

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Cite this

Motozawa, M., & Sawada, T. (2003). Characteristics of ultrasound propagation in a magnetic fluid under uniform magnetic field. In A. Ogut, Y. Tsuji, M. Kawahashi, A. Ogut, Y. Tsuji, & M. Kawahashi (Eds.), Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference: Volume 1, Part C, Forums (pp. 1577-1580). (Proceedings of the ASME/JSME Joint Fluids Engineering Conference; Vol. 1 C).