Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba

Tomoyoshi Nozaki, Takashi Asai, Lidya B. Sanchez, Seiki Kobayashi, Miki Nakazawa, Tsutomu Takeuchi

Research output: Contribution to journalArticle

94 Citations (Scopus)

Abstract

The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine- auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

Original languageEnglish
Pages (from-to)32445-32452
Number of pages8
JournalJournal of Biological Chemistry
Volume274
Issue number45
DOIs
Publication statusPublished - 1999 Nov 5

Fingerprint

Serine O-Acetyltransferase
Entamoeba
Cysteine Synthase
Entamoeba histolytica
Gene encoding
Biosynthesis
Biosynthetic Pathways
Cysteine
Parasites
Amoeba
Enzymes
Genes
Synechococcus
Amino Acids
Cystine
Gene Library
Sulfhydryl Compounds
Serine
Escherichia coli
Hydrogen Peroxide

ASJC Scopus subject areas

  • Biochemistry

Cite this

Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. / Nozaki, Tomoyoshi; Asai, Takashi; Sanchez, Lidya B.; Kobayashi, Seiki; Nakazawa, Miki; Takeuchi, Tsutomu.

In: Journal of Biological Chemistry, Vol. 274, No. 45, 05.11.1999, p. 32445-32452.

Research output: Contribution to journalArticle

@article{12b1eb029f2c4cdd9632ae0cf56bf0d4,
title = "Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba",
abstract = "The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine- auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52{\%} identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.",
author = "Tomoyoshi Nozaki and Takashi Asai and Sanchez, {Lidya B.} and Seiki Kobayashi and Miki Nakazawa and Tsutomu Takeuchi",
year = "1999",
month = "11",
day = "5",
doi = "10.1074/jbc.274.45.32445",
language = "English",
volume = "274",
pages = "32445--32452",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "45",

}

TY - JOUR

T1 - Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba

AU - Nozaki, Tomoyoshi

AU - Asai, Takashi

AU - Sanchez, Lidya B.

AU - Kobayashi, Seiki

AU - Nakazawa, Miki

AU - Takeuchi, Tsutomu

PY - 1999/11/5

Y1 - 1999/11/5

N2 - The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine- auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

AB - The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine- auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

UR - http://www.scopus.com/inward/record.url?scp=0033527657&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033527657&partnerID=8YFLogxK

U2 - 10.1074/jbc.274.45.32445

DO - 10.1074/jbc.274.45.32445

M3 - Article

VL - 274

SP - 32445

EP - 32452

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 45

ER -