TY - JOUR
T1 - Comparative genomics of Bacteria commonly identified in the built environment
AU - Merino, Nancy
AU - Zhang, Shu
AU - Tomita, Masaru
AU - Suzuki, Haruo
N1 - Funding Information:
NM received the Earth-Life Science Institute Origin of Life (EON) Postdoctoral Fellowship, which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation. Research funds were received from Keio University, the Yamagata prefectural government and the City of Tsuruoka.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/1/28
Y1 - 2019/1/28
N2 - Background: The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. Results: Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." Conclusion: Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
AB - Background: The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. Results: Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." Conclusion: Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
KW - Bacteria
KW - Built environment
KW - Codon usage bias
KW - Diversity
KW - GC content
KW - Genome size
KW - Genomic features
KW - Replication strand skew
UR - http://www.scopus.com/inward/record.url?scp=85060611690&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060611690&partnerID=8YFLogxK
U2 - 10.1186/s12864-018-5389-z
DO - 10.1186/s12864-018-5389-z
M3 - Article
C2 - 30691394
AN - SCOPUS:85060611690
SN - 1471-2164
VL - 20
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 92
ER -