Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

Takuya T. Maeda, Itsuki Ajioka, Kazunori Nakajima

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Background: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results: We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting.

Original languageEnglish
Article number43
JournalBMC Systems Biology
Volume1
DOIs
Publication statusPublished - 2007 Sep 20

Fingerprint

Cell signaling
Sorting
Cell Movement
Cells
Model-based
Cell
Bridge approaches
Movement
Cytology
Cell Population
Morphogenesis
Adhesion
Self-organization

ASJC Scopus subject areas

  • Molecular Biology
  • Structural Biology
  • Applied Mathematics
  • Modelling and Simulation
  • Computer Science Applications

Cite this

@article{c7b68c86128e4de18e6eb1defd47abd3,
title = "Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the {"}inside and outside{"} pattern of cell sorting",
abstract = "Background: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results: We applied the model to {"}inside and outside{"} pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the {"}inside and outside{"} pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the {"}inside and outside{"} pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting.",
author = "Maeda, {Takuya T.} and Itsuki Ajioka and Kazunori Nakajima",
year = "2007",
month = "9",
day = "20",
doi = "10.1186/1752-0509-1-43",
language = "English",
volume = "1",
journal = "BMC Systems Biology",
issn = "1752-0509",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

AU - Maeda, Takuya T.

AU - Ajioka, Itsuki

AU - Nakajima, Kazunori

PY - 2007/9/20

Y1 - 2007/9/20

N2 - Background: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results: We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting.

AB - Background: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results: We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting.

UR - http://www.scopus.com/inward/record.url?scp=36849055640&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36849055640&partnerID=8YFLogxK

U2 - 10.1186/1752-0509-1-43

DO - 10.1186/1752-0509-1-43

M3 - Article

VL - 1

JO - BMC Systems Biology

JF - BMC Systems Biology

SN - 1752-0509

M1 - 43

ER -