TY - GEN
T1 - Computational fluid dynamic analysis of a marine hydrokinetic crossflow turbine in low Reynolds number flow
AU - Doan, Minh N.
AU - Alayeto, Ivan H.
AU - Kumazawa, Kana
AU - Obi, Shinnosuke
N1 - Funding Information:
MND thanks Prof. Keita Ando, Uros Markovic, Naomichi Baba, Naoya Sumimura, Julio Barros, Anna Mizobuchi, Mehdi Badri, and Prof. Laura Beninati for fruitful discussions and help with the experimental setup. This research was supported by the Keio ”Design The Future” award.
Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - This study focuses on surveying different turbulence models and dynamic mesh techniques to simulate a marine hydrokinetic (MHK) crossflow turbine at Rec ˜ 7,000. While several research projects have shown that studies of MHK devices in low Re flow could still yield interesting and significant results, existing computational fluid dynamic (CFD) simulations were conducted at the chord based Re of 105 ~ 106. The wake and power production of a laboratory-scaled MHK crossflow turbine were numerically simulated and compared with relevant experimental data. The vertical axis turbine operated in a small flume with 20% blockage ratio and was fabricated by mounting three NACA0012 (2.54 cm chord length) straight blades at a radius of 3.41 cm and 15? pitch angle. Within OpenFOAM environment, blade-resolved models were built with Spalart-Allmaras, k-omega shear stress transport (SST), and k-kl-omega unsteady Reynolds-averaged Navier-Stokes simulation (URANS) in both two and three dimensions. Results from each model were compared with the experimental power measurement and flow field obtained by monoscopic particle image velocimetry (2D PIV). Additionally, four different techniques for moving the solid boundaries (turbine blades) in the unsteady simulation were presented and compared in terms of solution consistency and required computational power. Overset mesh, time-deforming mesh, and moving immersed boundary are all available in this open source environment, beside the common rotating mesh technique, and possess the potential to be applied to a more complicated configuration of turbines.
AB - This study focuses on surveying different turbulence models and dynamic mesh techniques to simulate a marine hydrokinetic (MHK) crossflow turbine at Rec ˜ 7,000. While several research projects have shown that studies of MHK devices in low Re flow could still yield interesting and significant results, existing computational fluid dynamic (CFD) simulations were conducted at the chord based Re of 105 ~ 106. The wake and power production of a laboratory-scaled MHK crossflow turbine were numerically simulated and compared with relevant experimental data. The vertical axis turbine operated in a small flume with 20% blockage ratio and was fabricated by mounting three NACA0012 (2.54 cm chord length) straight blades at a radius of 3.41 cm and 15? pitch angle. Within OpenFOAM environment, blade-resolved models were built with Spalart-Allmaras, k-omega shear stress transport (SST), and k-kl-omega unsteady Reynolds-averaged Navier-Stokes simulation (URANS) in both two and three dimensions. Results from each model were compared with the experimental power measurement and flow field obtained by monoscopic particle image velocimetry (2D PIV). Additionally, four different techniques for moving the solid boundaries (turbine blades) in the unsteady simulation were presented and compared in terms of solution consistency and required computational power. Overset mesh, time-deforming mesh, and moving immersed boundary are all available in this open source environment, beside the common rotating mesh technique, and possess the potential to be applied to a more complicated configuration of turbines.
UR - http://www.scopus.com/inward/record.url?scp=85076430399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076430399&partnerID=8YFLogxK
U2 - 10.1115/AJKFluids2019-4698
DO - 10.1115/AJKFluids2019-4698
M3 - Conference contribution
AN - SCOPUS:85076430399
T3 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
BT - Computational Fluid Dynamics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Y2 - 28 July 2019 through 1 August 2019
ER -