Conical potential model for InGaAs/GaAs quantum dots formed in tetrahedral-shaped recesses

Akira Endoh, Yoshiki Sakuma, Motomu Takatsu, Yuji Awano, Naoki Yokoyama

Research output: Contribution to journalArticle

Abstract

We developed a conical potential model for InGaAs/GaAs quantum dots formed in tetrahedral-shaped recesses (TSRs) and evaluated the diameter and average indium (In) content of TSR quantum dots by combining with magnetophotoluminescence (PL) measurements. The model calculations of the PL peak energy and its diamagnetic shift of TSR quantum dots were performed using the effective mass approximation method. We found that the diameter and the ratio of average In content of a TSR quantum dot to that of the surrounding quantum well are independent of the flow rate of trimethylindium, which is the source gas of In, in the range of our experiments. The negative diamagnetic shift of the PL peak from the first excited state transition, which was observed for the "In-rich" sample, could be explained by the contributions of two different energy levels with a different angular momentum.

Original languageEnglish
Pages (from-to)4745-4748
Number of pages4
JournalJournal of Applied Physics
Volume88
Issue number8
DOIs
Publication statusPublished - 2000 Oct
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this