Abstract
Up to now, much effort has been concentrated on the control of a single control of motion system. However future machine or robots will be spread out in our society and they will make their motion in an open environment. Since such an environment has a lot of modes, a design methodology of motion controller for such motion system is required. At first, the paper shows a novel viewpoint to abstract the modes from environment. Two examples of an abstraction using Hadamard matrix are shown. One is a friction-free drive and the other is a control of a paddle foot. Modal transmission from environment to the final motion should change adaptively according to the situation. If the system becomes complex, it is necessary to design the variable network from the modes to the motion via motion controllers. The paper secondarily shows a methodology to design the network of the motion system based on the hard real-time manner. Connection matrix and reachable matrix are used for the design of variable network. Since the total performance of the motion system depends on the performance of a single motion controller, thirdly a design method for the robust control with the feedforward loop is proposed. There are numerical and experimental examples in the paper. They show the viability of novel approach to the complex motion.
Original language | English |
---|---|
Pages | 28-33 |
Number of pages | 6 |
Publication status | Published - 2002 Dec 1 |
Event | 7th International Workshop on Advanced Motion Control, AMC '02 - Proceedings - Maribor, Slovenia Duration: 2002 Jul 3 → 2002 Jul 5 |
Other
Other | 7th International Workshop on Advanced Motion Control, AMC '02 - Proceedings |
---|---|
Country/Territory | Slovenia |
City | Maribor |
Period | 02/7/3 → 02/7/5 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modelling and Simulation
- Computer Science Applications
- Electrical and Electronic Engineering