TY - JOUR
T1 - Continuous separation of CO2 from a H2 + CO2 gas mixture using clathrate hydrate
AU - Horii, Shunsuke
AU - Ohmura, Ryo
N1 - Funding Information:
The authors would like to thank Tomoya Ozaki, Keio University for his encouragement on this work. This study was supported by a Keirin-racing-based research-promotion fund from the JKA Foundation (Grant No. 28-142 ).
Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/9/1
Y1 - 2018/9/1
N2 - CO2 capture using clathrate hydrates is an environmentally friendly separation technology. When considering operational efficiency, it is desirable to operate the separation process continuously. In this experimental study, the continuous separation of CO2 from a model fuel gas was performed for H2 + CO2 + H2O and H2 + CO2 + tetra-n-butylammonium bromide (TBAB) + H2O systems with TBAB mass fractions of wTBAB = 0, 0.05, 0.10, and 0.32. Measurements were taken to track the time evolution of compositions of the gas phase and hydrate slurry. After between 37 and 48 h from the start of the experiment, H2 compositions in the gas phase reached steady state values of 0.87, 0.81, and 0.78 for wTBAB values of 0, 0.05, and 0.10, respectively. For the same conditions, CO2 compositions in the hydrate slurry reached steady state values of 1.00, 0.82, and 0.79, respectively. In carrying out this work we have shown that it is possible to successfully separate CO2 using structure I hydrates and ionic semiclathrate hydrates, on a continuous basis. There is the caveat, however, that for wTBAB = 0.32 a continuous separation process is not possible. The split fraction of CO2 we attained were 0.76, 0.64, and 0.62 for wTBAB values of 0, 0.05, and 0.10, respectively. The water system (wTBAB = 0) exhibited the highest H2 compositions in the gas phase, highest CO2 compositions in the hydrate slurry, and highest split fraction of CO2. Although short-term operation, specifically 18 h, is possible with wTBAB = 0, continuous hydrate formation cannot be implemented. The concentration of captured CO2 for wTBAB = 0 was comparable to that obtained from hydrate-based gas separation in multistage processes or chemical absorption.
AB - CO2 capture using clathrate hydrates is an environmentally friendly separation technology. When considering operational efficiency, it is desirable to operate the separation process continuously. In this experimental study, the continuous separation of CO2 from a model fuel gas was performed for H2 + CO2 + H2O and H2 + CO2 + tetra-n-butylammonium bromide (TBAB) + H2O systems with TBAB mass fractions of wTBAB = 0, 0.05, 0.10, and 0.32. Measurements were taken to track the time evolution of compositions of the gas phase and hydrate slurry. After between 37 and 48 h from the start of the experiment, H2 compositions in the gas phase reached steady state values of 0.87, 0.81, and 0.78 for wTBAB values of 0, 0.05, and 0.10, respectively. For the same conditions, CO2 compositions in the hydrate slurry reached steady state values of 1.00, 0.82, and 0.79, respectively. In carrying out this work we have shown that it is possible to successfully separate CO2 using structure I hydrates and ionic semiclathrate hydrates, on a continuous basis. There is the caveat, however, that for wTBAB = 0.32 a continuous separation process is not possible. The split fraction of CO2 we attained were 0.76, 0.64, and 0.62 for wTBAB values of 0, 0.05, and 0.10, respectively. The water system (wTBAB = 0) exhibited the highest H2 compositions in the gas phase, highest CO2 compositions in the hydrate slurry, and highest split fraction of CO2. Although short-term operation, specifically 18 h, is possible with wTBAB = 0, continuous hydrate formation cannot be implemented. The concentration of captured CO2 for wTBAB = 0 was comparable to that obtained from hydrate-based gas separation in multistage processes or chemical absorption.
KW - CO separation
KW - Clathrate hydrate
KW - Ionic semiclathrate hydrate
KW - Pre-combustion capture
KW - Tetra-n-butylammonium bromide (TBAB)
UR - http://www.scopus.com/inward/record.url?scp=85046703669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046703669&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2018.04.105
DO - 10.1016/j.apenergy.2018.04.105
M3 - Article
AN - SCOPUS:85046703669
VL - 225
SP - 78
EP - 84
JO - Applied Energy
JF - Applied Energy
SN - 0306-2619
ER -