Covalent attachment of mechanoresponsive luminescent micelles to glasses and polymers in aqueous conditions

Yoshimitsu Sagara, Toru Komatsu, Tasuku Ueno, Kenjiro Hanaoka, Takashi Kato, Tetsuo Nagano

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.

Original languageEnglish
Pages (from-to)4273-4280
Number of pages8
JournalJournal of the American Chemical Society
Volume136
Issue number11
DOIs
Publication statusPublished - 2014 Mar 19
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Covalent attachment of mechanoresponsive luminescent micelles to glasses and polymers in aqueous conditions'. Together they form a unique fingerprint.

Cite this