TY - JOUR
T1 - Curing the megaplasmid pTT27 from Thermus thermophilus HB27 and maintaining exogenous plasmids in the plasmid-free strain
AU - Ohtani, Naoto
AU - Tomita, Masaru
AU - Itaya, Mitsuhiro
N1 - Publisher Copyright:
© 2016, American Society for Microbiology. All Rights Reserved.
PY - 2016
Y1 - 2016
N2 - Stepwise deletions in the only plasmid in Thermus thermophilus HB27, megaplasmid pTT27, showed that two distantly located loci were important for maintenance of the plasmid. One is a minimum replicon including one gene, repT, coding a replication initiator, and the other encodes subunits of class I ribonucleotide reductase (RNR) for deoxynucleoside triphosphate (dNTP) synthesis. Since the initiator protein, RepT, bound to direct repeats downstream from its own gene, it was speculated that a more-downstream A+T-rich region, which was critical for replication ability, could be unwound for replication initiation. On the other hand, the class I RNR is not necessarily essential for cell growth, as evidenced by the generation of the plasmid-free strain by the loss of pTT27. However, the plasmid-free strain culture has fewer viable cells than the wild-type culture, probably due to a dNTP pool imbalance in the cell. This is because of the introduction of the class I RNR genes or the supplementation of 5'-deoxyadenosylcobalamin, which stimulated class II RNR encoded in the chromosome, resolved the decrease in the number of viable cells in the plasmid-free strain. Likewise, these treatments dramatically enhanced the efficiency of transformation by exogenous plasmids and the stability of the plasmids in the strain. Therefore, the class I RNR would enable the stable maintenance of plasmids, including pTT27, as a result of genome replication normalized by reversing the dNTP pool imbalance. The generation of this plasmid-free strain with great natural competence and its analysis in regard to exogenous plasmid maintenance will expand the availability of HB27 for thermophilic cell factories.
AB - Stepwise deletions in the only plasmid in Thermus thermophilus HB27, megaplasmid pTT27, showed that two distantly located loci were important for maintenance of the plasmid. One is a minimum replicon including one gene, repT, coding a replication initiator, and the other encodes subunits of class I ribonucleotide reductase (RNR) for deoxynucleoside triphosphate (dNTP) synthesis. Since the initiator protein, RepT, bound to direct repeats downstream from its own gene, it was speculated that a more-downstream A+T-rich region, which was critical for replication ability, could be unwound for replication initiation. On the other hand, the class I RNR is not necessarily essential for cell growth, as evidenced by the generation of the plasmid-free strain by the loss of pTT27. However, the plasmid-free strain culture has fewer viable cells than the wild-type culture, probably due to a dNTP pool imbalance in the cell. This is because of the introduction of the class I RNR genes or the supplementation of 5'-deoxyadenosylcobalamin, which stimulated class II RNR encoded in the chromosome, resolved the decrease in the number of viable cells in the plasmid-free strain. Likewise, these treatments dramatically enhanced the efficiency of transformation by exogenous plasmids and the stability of the plasmids in the strain. Therefore, the class I RNR would enable the stable maintenance of plasmids, including pTT27, as a result of genome replication normalized by reversing the dNTP pool imbalance. The generation of this plasmid-free strain with great natural competence and its analysis in regard to exogenous plasmid maintenance will expand the availability of HB27 for thermophilic cell factories.
UR - http://www.scopus.com/inward/record.url?scp=84961174273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961174273&partnerID=8YFLogxK
U2 - 10.1128/AEM.03603-15
DO - 10.1128/AEM.03603-15
M3 - Article
C2 - 26712540
AN - SCOPUS:84961174273
SN - 0099-2240
VL - 82
SP - 1537
EP - 1548
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 5
ER -