Cu1+, but not Cu2+ is capable of inhibition of AQP4 permeability in an in vitro CHO cell based model

Arno Vandebroek, Masato Yasui

Research output: Contribution to journalArticlepeer-review

Abstract

Aquaporin 4 (AQP4) is an important water channel in the central nervous system which is implicated in several neurological disorders. Due to its significance, the identification of molecules which are able to modulate its activity is quite important for potential therapeutic applications. Here we used a novel screening method involving CHO cell lines which stably express AQP4 to test for potential molecules of interest. Using this method we identified a metal ion, Cu1+, which is able to inhibit AQP4 activity in a cell model, an interaction which has not been previously described. This inhibition was effective at concentrations greater than 500 nM in the CHO cell model, and was confirmed in a proteoliposome based model. Furthermore, the binding sites for Cu1+ inhibition of AQP4 are identified as cysteine 178 and cysteine 253 on the intracellular domain of the protein via the synthesis of AQP4 containing point mutations to remove these cysteines. These results suggest that Cu1+ is able to access intracellular binding sites and inhibit AQP4 in a cell based model.

Original languageEnglish
Article number101132
JournalBiochemistry and Biophysics Reports
Volume28
DOIs
Publication statusPublished - 2021 Dec

Keywords

  • Aquaporin 4
  • Cu(I)Cl
  • Inhibitor
  • Osmotic water permeability
  • Proteoliposome

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry

Fingerprint

Dive into the research topics of 'Cu<sup>1+</sup>, but not Cu<sup>2+</sup> is capable of inhibition of AQP4 permeability in an in vitro CHO cell based model'. Together they form a unique fingerprint.

Cite this