Abstract
Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knockin (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP+/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects.
Original language | English |
---|---|
Pages (from-to) | 2038-2049 |
Number of pages | 12 |
Journal | Genes and Development |
Volume | 26 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2012 Sept 15 |
Externally published | Yes |
Keywords
- Angiogenesis
- Basement membrane
- Brain hemorrhage
- Collagen biosynthesis
- Metabolism
- Oxidative stress
ASJC Scopus subject areas
- Genetics
- Developmental Biology