Data-Driven Wide-Area Control Design of Power System Using the Passivity Shortage Framework

Ying Xu, Zhihua Qu, Roland Harvey, Toru Namerikawa

Research output: Contribution to journalArticlepeer-review

Abstract

A novel wide-area control design is presented to mitigate inter-area power frequency oscillations. A large-scale power system is decomposed into a network of passivity-short subsystems whose nonlinear interconnections have a state-dependent affine form, and by utilizing the passivity shortage framework, a two-level design procedure is developed. At the lower level, any generator control can be viewed as one that makes the generator passivity-short and L-2 stable, and the stability impact of the lower-level control on the overall system can be characterized in terms of two parameters. While the system is nonlinear, the impact parameters can be optimized by solving a data-driven matrix inequality (DMI), and the high-level wide-area control is then designed by solving another Lyapunov matrix inequality in terms of the design parameters. The proposed methodology makes the design modular, and the resulting control is adaptive to operating conditions of the power system. Standard test systems are used to illustrate the proposed design, including DMI and the wide-area control, and simulation results demonstrate its effectiveness in damping out inter-area oscillations.

Original languageEnglish
Article number9141445
Pages (from-to)830-841
Number of pages12
JournalIEEE Transactions on Power Systems
Volume36
Issue number2
DOIs
Publication statusPublished - 2021 Mar

Keywords

  • Data-driven control
  • lyapunov stability
  • matrix inequality
  • passivity-short systems
  • power systems
  • wide-area control

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Data-Driven Wide-Area Control Design of Power System Using the Passivity Shortage Framework'. Together they form a unique fingerprint.

Cite this