Deactivation mechanism of In atoms doped in a Si crystal and reactivation due to codoping with B and C

Jun Yamauchi, Nobutoshi Aoki

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

We present results of first-principles calculations to clarify the activation and deactivation mechanism of indium (In) atoms in silicon (Si). The interaction between In atoms is found to be attractive and leads to spontaneous formation of the stable and electrically inactive nearest neighbor substitutional (NNS) In2 cluster, which is responsible for the much lower electrical activity compared with that for the boron atoms in Si. An elemental process of the formation of the NNS In2 cluster is found to be exothermic and its activation barrier is 0.7 eV, which is comparable to that (0.5 eV) of the kick-out reaction from an interstitial In to a substitutional In with an interstitial Si. We found that codoping boron (B) and carbon (C) with In makes the inactive In2 cluster unstable, and is efficient to increase the electrical activity. The activation/deactivation mechanism of In is relevant to electronic and elastic energy of the clusters (In In,In B,In C), which is clearly explained in the framework of the tight-binding approximation. In addition, we present the results of calculations for the vibrational properties of In B and In C clusters in Si.

Original languageEnglish
Article number205205
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume71
Issue number20
DOIs
Publication statusPublished - 2005

Fingerprint

Indium
Silicon
deactivation
indium
Atoms
Crystals
silicon
crystals
atoms
Boron
Chemical activation
activation
interstitials
boron

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

@article{17438c4f1ae640e1bb532f05922713dd,
title = "Deactivation mechanism of In atoms doped in a Si crystal and reactivation due to codoping with B and C",
abstract = "We present results of first-principles calculations to clarify the activation and deactivation mechanism of indium (In) atoms in silicon (Si). The interaction between In atoms is found to be attractive and leads to spontaneous formation of the stable and electrically inactive nearest neighbor substitutional (NNS) In2 cluster, which is responsible for the much lower electrical activity compared with that for the boron atoms in Si. An elemental process of the formation of the NNS In2 cluster is found to be exothermic and its activation barrier is 0.7 eV, which is comparable to that (0.5 eV) of the kick-out reaction from an interstitial In to a substitutional In with an interstitial Si. We found that codoping boron (B) and carbon (C) with In makes the inactive In2 cluster unstable, and is efficient to increase the electrical activity. The activation/deactivation mechanism of In is relevant to electronic and elastic energy of the clusters (In In,In B,In C), which is clearly explained in the framework of the tight-binding approximation. In addition, we present the results of calculations for the vibrational properties of In B and In C clusters in Si.",
author = "Jun Yamauchi and Nobutoshi Aoki",
year = "2005",
doi = "10.1103/PhysRevB.71.205205",
language = "English",
volume = "71",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "20",

}

TY - JOUR

T1 - Deactivation mechanism of In atoms doped in a Si crystal and reactivation due to codoping with B and C

AU - Yamauchi, Jun

AU - Aoki, Nobutoshi

PY - 2005

Y1 - 2005

N2 - We present results of first-principles calculations to clarify the activation and deactivation mechanism of indium (In) atoms in silicon (Si). The interaction between In atoms is found to be attractive and leads to spontaneous formation of the stable and electrically inactive nearest neighbor substitutional (NNS) In2 cluster, which is responsible for the much lower electrical activity compared with that for the boron atoms in Si. An elemental process of the formation of the NNS In2 cluster is found to be exothermic and its activation barrier is 0.7 eV, which is comparable to that (0.5 eV) of the kick-out reaction from an interstitial In to a substitutional In with an interstitial Si. We found that codoping boron (B) and carbon (C) with In makes the inactive In2 cluster unstable, and is efficient to increase the electrical activity. The activation/deactivation mechanism of In is relevant to electronic and elastic energy of the clusters (In In,In B,In C), which is clearly explained in the framework of the tight-binding approximation. In addition, we present the results of calculations for the vibrational properties of In B and In C clusters in Si.

AB - We present results of first-principles calculations to clarify the activation and deactivation mechanism of indium (In) atoms in silicon (Si). The interaction between In atoms is found to be attractive and leads to spontaneous formation of the stable and electrically inactive nearest neighbor substitutional (NNS) In2 cluster, which is responsible for the much lower electrical activity compared with that for the boron atoms in Si. An elemental process of the formation of the NNS In2 cluster is found to be exothermic and its activation barrier is 0.7 eV, which is comparable to that (0.5 eV) of the kick-out reaction from an interstitial In to a substitutional In with an interstitial Si. We found that codoping boron (B) and carbon (C) with In makes the inactive In2 cluster unstable, and is efficient to increase the electrical activity. The activation/deactivation mechanism of In is relevant to electronic and elastic energy of the clusters (In In,In B,In C), which is clearly explained in the framework of the tight-binding approximation. In addition, we present the results of calculations for the vibrational properties of In B and In C clusters in Si.

UR - http://www.scopus.com/inward/record.url?scp=28744444844&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28744444844&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.71.205205

DO - 10.1103/PhysRevB.71.205205

M3 - Article

VL - 71

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 20

M1 - 205205

ER -