Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors

David G. Mackanic, Xuzhou Yan, Qiuhong Zhang, Naoji Matsuhisa, Zhiao Yu, Yuanwen Jiang, Tuheen Manika, Jeffrey Lopez, Hongping Yan, Kai Liu, Xiaodong Chen, Yi Cui, Zhenan Bao

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)

Abstract

The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m−3) and high ionic conductivity (1.2 × 10−4 S cm−1 at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm−2 that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.

Original languageEnglish
Article number5384
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors'. Together they form a unique fingerprint.

Cite this